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The calculation of random tiling configurational entropy amounts to an 
enumeration of partitions. A geometrical description of the configuration space 
is given in terms of integral points in a higla-dimensional space, and the entropy 
is deduced from the integral volume of a convex polytope. In some cases the 
latter volume can be expressed in a compact multiplicative formula, and in all 
cases in terms of binomial series, the origin of which is given a geometrical 
meaning. Our results mainly concern codimension-one filings, but can also be 
extended to higher codimension tilings. We also discuss the link between free- 
boundary- and Iixed-boundary-condition problems. 

KEY WORDS: Quasicrystals; configurational entropy; partitions: random 
tilings. 

1. I N T R O D U C T I O N  

Quasicrystal l ine materials revealing exotic symmetries were discovered 
more  than 10 years ago. ~ A great deal of work has been devoted to under-  
s tanding their s tructure at the atomic level. Even though one can estimate 
that in the best cases only 70-80 % of the atomic locations are known,  this 
can already be seen as a success, considering the initial complexity of the 
problem. Among  the m a n y  quest ions which are still open, the origin of the 

stability in these noncrys ta l lographic  metallic alloys is not  clearly under-  
stood. However,  several models have been proposed to explain this 
stability. One  of the most  popular  consists in consider ing quasicrystals as 
part icular  instances of Hume-Rothe ry  alloys. ~6~ Indeed, these phases appear  
to be stabilized when their s toichiometry amoun t s  to almost  definite values 
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for the ratio of electrons per atom. In the language of quasicrystals, this is 
associated with Fermi surfaces close to boundaries of pseudo-Brillouin 
zones, the latter being defined with respect to the most intense diffraction 
peaks. 

A second often-considered explanation is that of an entropically stabi- 
lized material, the random tiling modeL'S2' The underlying problem can be 
easily settled (as was initially done) under the simplifying assumption that 
the complexity of the structure is coded in the attangement of tiles (for 
instance, simple rhombi in 2D or rhombohedra in 3D). Once the best 
arrangement of tiles is found (e.g., which minimizes the free energy), the 
last step toward atomic models is made by an atomic decoration of the 
tiles. Note that this way of modeling the structure (with each cell of a given 
type receiving the same atomic decoration) does not exhaust all the 
possible atomic structures, but is believed to give plausible averaged 
structures. In the "maximally" random tiling model, the free energy only 
depends on its configurational entropy contribution, which amounts to a 
combinatorial problem. Note that, in the simplest case of rhombus tilings 
on a triangular grid (which is not strictly speaking related to quasicrystal 
problems, but retains part of their complexity), B16te and Hilhorst ~t7~ 
showed that the entropy amounts to that of the ground state of an Ising 
antiferromagnet on a triangular lattice. 

More realistic models should take into account an energy term that is 
a function of the tile configuration. There could even be a phase transition 
between a low-temperature phase, whose stability would be mostly driven 
by interaction energies (favoring a perfect quasicrystal order), and a higher 
temperature phase, entropically stabilized, whose disorder would never- 
theless not destroy the Bragg-like diffraction peaks (in 3D) which are the 
signature of the quasiperiodic order. 

Even though, on physical grounds, we do not particularly favor the 
entropic stabilization mechanism as opposed to the electronic quantum 
effect, we shall focus in this paper on the combinatorial problem which 
underlies this entropic model. Indeed, this problem of"statistical mechanics 
of tilings" appears to be extremely interesting. The paradigmatic models of 
quasicrystals are the Fibonacci chain in 1D, the Penrose tiling in 2D, and 
their generalized icosahedral versions in 3D. ~4~ The standard method for 
generating these d-dimensional structures consists in a selection of sites and 
tiles in a D-dimensional (D > d) lattice according to certain rules, followed 
by a projection onto a suitable d-dimensional Euclidean subspace (we say 
that we have a D--, d problem). A main difference between the quasi- 
periodic and the simplest crystalline arrangements (e.g., the periodic chain 
and square and cubic tilings in 1D, 2D, and 3D, respectively) is the 
possibility in the former of limited local rearrangements ("reshuffling") of 
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tiles. They are often called localized phasons or elementary flips. They give 
rise to huge numbers of very similar structures, and therefore to a con- 
figurational entropy term in the free energy. 

We shall mainly ask the following question: given a certain polyhedral 
boundary in d dimensions, in how many ways is it possible to tile perfectly 
this polyhedron with d-dimensional rhombohedra? More specifically, we 
shall focus here on the simple codimension-one case, where, in the cut-and- 
project language, D =  d +  1. However, many of the results presented here 
also apply to higher codimension problems. The polyhedron to be tiled will 
be the generic "shadow" of a D-dimensional rectangular parallelepiped 
whose edge sizes take integer lengths in the D-dimensional hypercubic 
lattice. The tiles in d dimensions will be the generic projections of the 
d-dimensional facets of the D-dimensional hypercubes. In the simple 3--, 2 
case, this amounts to tiling hexagons of integral sides by unit rhombi. As 
a result, all the investigated tilings precisely correspond to those obtained 
through a standard grid method c'~) slightly modified (the grids are not 
necessarily straight) with a well-defined number of grids along each direc- 
tion. In other words, the investigated tilings correspond to tilings that can 
be generated by a cut-and-project algorithm with a constrained selection 
algorithm (the sites are selected inside a given rectangular parallelepiped ~ to~ 

and some sites are fixed on the boundary). Note that all the tilings 
associated with quasicrystalline structures correspond to codimensions 
greater than one; we have already obtained some results in these more 
complicated cases. <~) But the codimension-one case is already very rich 
and is connected with several combinatorial distinct problems. Therefore, it 
deserves a separate presentation. A key to this combinatorial approach is 
the possibility to map tilings into combinatorial objects called partitions, as 
was done in the 3 ~ 2 case by Elser. (7~ Note that, owing to their relation 
to cut-and-project models, all these tilings can also be lifted into faceted 
directed d-dimensional membranes built on D-dimensional hypercubic 
lattices. By directed, we mean that, as for directed paths, their projection 
along a suitable direction creates neither gaps nor overlaps. 

In order to evaluate the configurational entropy, we specify the 
polygonal or polyhedral boundary by D integers which fix the size and 
shape of the rectangular parallelepiped, and then let the size of this bound- 
ary increase, "holding the shape fixed. Note that in this specific statistical 
mechanics problem the entropy depends on the boundary condition at the 
infinite-size limit, in a way that will be discussed below. In particular, the 
boundary condition associated with our combinatorial treatment gives a 
lower configurational entropy as compared to the free or periodic bound- 
ary conditions. That is why we have to be very careful with these boundary 
conditions and we explore below the relation between different ones. 



700 Destainville et al. 

In Section 2, we first recall briefly the link between partitions and 
tilings, not only for codimension-one tilings, but also for higher codimen- 
sion tilings. We also explain the link between tilings and directed mem- 
branes (Section 2.5). In Section 3, we define the configuration space of this 
enumeration problem and its general properties. This configuration space 
is a convex polytope embedded in a space of very high dimension. 
Enumerating the tilings amounts to counting integral-coordinate points 
inside this convex polytope. Section 4 is devoted to presenting the tools 
which will prove useful in our study of the configuration space (Ehrhart poly- 
nomial, poset graph, etc.). The next two sections contain our main theoretical 
results: additive (Section5) and multiplicative (Section6) formulas. 
Finally, Section 7 gives results and conjectures about the configurational 

Table I, Notations Used in This Paper 

Section where 
Notation delined Delinition 

a i 5.5.1 
D I 
d I 
D +  d I 
.TiA-] 3.2 

�9 T['~] 4.2 
~/~ 4.2 
.1/ [ h) 3.2 
�9 YFtq]  4.2 
.lt" ( ~ ) 4.2 
K 3.1 
k i 2.6 
k! [ ' ' j  6.1 
�9 l l = ( a  o) 5.2 
./7(X) 5.3.2 
M 5.5.4 
P ~l~ll p )  4.1 
.#!~I~,,(X,,) 5.3.1 
p 2.1 
5/'[q] 5 

&, 4.2 
T~ 4.2 
T~ 4.2 
I/~; 4.2 
l i~ 4.2 
H,,n - a 5 

X~; ( I ' )  4. I 
xi 3.1 

Number  of simplices with .j descents 
Dimension of the lattice the membrane lies on 
Dimension of the tiling (or membrane)  
Type of problem considered 
K-dimensional configuration space 
Any q-dimensional extremal Ihce o f .F r  t,:l 
Bijection T,, --, V~, 
K-dimensional hypercube 
Any q-dimensional extremal face of#{ [t,l 
Mapping T.; ~ T ,  r 
Number  of parts; dimension o f .T  ttq 
Side lengths of the boundary 
Generalized factorial of order m 
Inclusion matrix 
Modified inclusion matrix 
Maximum nmnber  of descents 
Ehrhart polynomial o f . ~  [ K] 
Polynomial P,~ ~t written in the basis (X,~), ~ z 
Maximum height of  the parts 
Any q-dimensional normal simplex 
Point ofcoordinates (p, p ..... p} s / Y  ~'1 
Set ofextremal faces o f . f  th] 
Set ofextremal faces of.f!  [h] 
Set of vertices of.~ v[hl  
Set of vertices of . t / [hl  
Number  of configurations 
Polynomial ( l, ,~ ") 
Variables of  a partition problem 
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entropy, in finite-size tilings as well as at the infinite-size limit. The link 
between free-boundary and fixed-boundary conditions is also established in 
this section (Section 7.4). Section 8 is devoted to conclusions. Table I lists 
our notation. 

2. PARTIT IONS A N D  T IL INGS 

2.1. Hypersolid Part i t ions and General ized Part i t ions 

Generally speaking, we define a partition as a family of K integers 
arranged in an array so that two numbers in two adjacent boxes of this 
array satisfy an order relation. If every relation is strong (resp. weak), the 
partition is said to be strong (resp. weak). These integers are taken between 
0 and a given integer p (weakly for a weak partition and strongly for a 
strong partition), p is called the height of this partition. 

If the array is a hypercubic array of dimension d and if the parts of the 
partition are decreasing in each of the d directions of space, we call it a 
hypersolid partition. For  example, if d =  1, we have a linear partition, if 
d =  2, a plane partition (Fig. 1),~2~ and if d =  3, a solid partition. 

If  the order relations or the array are more general, we say that we 
have a generalized partition. 

2.2. Hypersolid Part i t ions and Codimension-One Tilings 

The mapping between tilings and partitions ~3~ appears clearly when 
looking at the example of Fig. 2: this figure illustrates the mapping between 
3 ~ 2 tilings and plane partitions. The rhombus tiling has a natural repre- 
sentation in a 3-dimensional space that can be seen as a plane partition of 
height p on a k x l rectangle. Conversely, the plane partition has a natural 
representation built on a cubic lattice in a 3-dimensional space, which is 
projected along the ( 1, 1, 1 ) direction in order to get a tiling, with identical 
but differently oriented rhombi. 

Fig. I. 

3 3 2  

2 2 1  

1 0 0  

Example of a plane partition: a phme partition of height p = 3 on a 3 x 3 rectangle. 
The integers are decreasing in each row and in each column (weakly). 
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Fig. 2. 

1 
1 

k 

Map: {3 --* 2 tilings} ~ {plane partit ions} (the plane parti t ion is tile same as the one 
in Fig. I 1. 

This can be generalized to arbitrary-dimension codimension-one 
tilings("~: there is a natural map: { d + l  ~ d  tilings} ~ {d-dimensional 
partitions}. Indeed, a d +  1---, d tiling has a natural representation in a 
(d+  1)-dimensional space, which can be seen as a hypersolid partition. 
That is why we must count d-dimensional partitions in order to enumerate 
d +  1 ~ d tilings. 

2.3. Boundary Conditions 

The 3 --* 2 example (Fig. 2) illustrates the fact that these tilings have a 
very specific boundary condition: here, we tile a hexagon. More generally 
speaking, the d + 1 ---, d tilings that we get by this method tile the projection 
of a (d+  1)-dimensional rectangular parallelepiped along the (1, 1 ..... I) 
direction. The polytopes resulting from such a projection form a standard 
set of space-filling zonotopes, ~3=~ beginning with the hexagon in 2D and the 
rhombic dodecahedron in 3D. We shall discuss later the influence of this 
boundary when we study entropy at the infinite-size limit. 

Note that this kind of fixed boundary condition for the tilings is a 
direct consequence of the standard definition for partitions. As will be dis- 
cussed in Section 7, these tilings differ from those built with free or periodic 
boundary conditions. It is nevertheless possible to generalize the partitions 
in order to match closer the latter conditions, but at the price of highly 
complicating the analysis. 

2.4. Greater Codimension Tilings 

We shall consider here a specific example of generalized partitions. 
Indeed, as shown in ref. 11, a higher codimension tiling can be seen as a 
generalized partition on a partition, or, in other words, as a partition on a 
tiling. The number of steps in the construction depends on the codimension. 
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1 1 

1 0 

21,1  

Fig. 3. A 4 ~ 2 tiling. S ta r t ing  from a 2 ---, 2 t i l ing, the first s tep bui lds  a 3 --+ 2 t i l ing Is l ight ly  

de lb rmcd  ). The  second step bui lds  u 4 ---, 2 tiling. 

For example, a 4--+ 2 tiling is a partition on a Fig. 2-like tiling (left- 
hand side) with suitable order relations among the cells of this partition 
(Fig. 3) (this kind of tiling is related to the octagonal quasiperiodic tiling). 

Note, however, that recent private discussion with V. Reiner raised 
some interesting questions on the one hand about the relation between our 
generalized partitions and the so-called P-partitionsJ 35"36~ and on the other 
hand about the relation between tilings and partitions in the cases d~> 3 
and D -  d >/2. In particular, the ergodicity question, that is, the possibility 
to connect any two tilings by sequences of flips, may be not trivial in these 
cases. 

Remark. On these tilings, p is a side length of the polygonal 
orpolyhedral boundary. It is artificially (and arbitrarily) singularized 
among the other side lengths in the partition point of view. 

2.5. Directed Membranes 

An important fact here is that these tilings can be lifted as d-dimen- 
sional nonffat structures embedded in D dimensions and then mapped onto 
a d-dimensional Euclidian space (d < D). 

For a codimension-one tiling, this nonflat structure is a membrane 
made of d-dimensional facets of the Z 't+l lattice. It is the natural represen- 
tation of the partition associated with the tiling {for example, in Fig. 2, the 
representation of the plane partition can be seen as the projection of a 
2-dimensional membrane in the 3-dimensional space). It is called a directed 

S22 S7 3-4-1r 
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membrane to emphasize the fact that its projection along the (1, 1 ..... 1) 
axis of the hypercubic array creates neither gaps nor overlaps. For d = 1, 
one recovers the usual directed paths (or directed polymers). 

For  a higher codimension tiling, each step in the construction that 
increases the codimension can be seen as an extension of the previous 
membrane in a new dimension of space. For instance, the second step of 
Fig. 3 is an extension of the 2-dimensional membrane into the fourth 
dimension of space. The 4 ~ 2 tiling is therefore a 2-dimensional mem- 
brane, made of square facets of Z 4, mapped onto the 2-dimensional space. 
This construction is of course related to the well-known cut-and-project  
method.~ 1_, 14) 

We have to define what the boundary conditions of Section 2.3 
become in the language of directed membranes. As illustrated in Figs. 2 
and 3, we also get a boundary condition in the D-dimensional space: the 
membrane is inscribed inside a (nonflat) polygon (or polyhedron), the 
projection of which on the d-dimensional space gives the tiling boundary. 
For  instance, the boundaries of 3 ~ 2 or 4 --* 2 tilings are (nonflat) 3-dimen- 
sional hexagons or 4-dimensional octagons. We shall call these boundaries 
the membrane f i 'ames. 

2.6. Number of Tiles 

In order to derive an entropy "per tile" we shall need in the following 
the number of tiles in the tilings under study. For  a given boundary condi- 
tion, this number of tiles does not depend on the tiling (elementary flips 
conserve the number of tiles): it is a function only of the side lengths of the 
boundary. 

For a codimension-one tiling which fills the projection along the 
(1, 1 ..... 1) direction of a rectangular parallelepiped of side lengths 
k~, k,_ ..... ka+ ~, using the fact that one kind of tile comes from one facet 
orientation in the membrane, and summing over the different kinds of tiles, 
one gets 

#ti les = a a ( k  I , k 2 ..... ka+ t) 

where aa is the sum of all the products of d numbers among k~, k2 ..... ka+~. 
Similarly, for any D ~ d problem, the number of tiles is 

# t i l e s = a a ( k l , k 2  .... kl~) 

where a,~ is now the sum of all the products of d numbers among the D 
integers k~, k2 ..... kt~. In the diagonal cases (for any i, k i = k ) ,  this reads 
# tiles = ( o ~ t,a 

d ! ~ . 



Configuration Entropy of Codimension-One Tilings 705 

3. CODIMENSION ONE: CONFIGURATION SPACE AND 
GENERAL PROPERTIES 

3.1. Configuration Space: Definitions 

Let us focus now on hypersolid partitions, although most of the 
notions and properties we present also apply to generalized partitions. To 
simplify further, we will only consider weak partitions. 

Since a partition is a family of K integers that satisfy a family of 
inequalities, if each value of a box is the value of a variable attached to this 
box, each partition is represented by an integral-coordinate point, or an 
integral point, in a K-dimensional space. 

For  example, if the 12 variables are set as 

and if the plane partition is 

XI X2 X 3 X4 

X5 X 6 X7 X8 

X9 Xlo Xll XI2 

3 3 2 1  
3 2 0 0  
1 1 0 0  

then the partition is represented by the integral point: 

{ x~ = 3; x 2 = 3; x3 = 2; x 4-- 1 

x5 3; x6=2 ;  x7=0 ;  x ~ = 0  

x9 1; x ] o = l ;  x ]~=0;  x t2=O 

in a 12-dimensional space. 

Notation. The variable attached to the box of coordinates 0q ..... ~a in 
the d-dimensional hypercubic array will sometimes be conveniently denoted 
by x~, ...... ,i (for example, x~ =x~.~.....~, etc.). The size of the array in each 
direction is denoted ki, to be consistent with the previous notation for the 
side lengths'of the boundary. 

3.2. Configuration Space: Convex Polytope in High Dimension 

The above variables obey the inequality 

xi>~Xi (3.1) 



706 Destainvil le et  al.  

where (i, j) denotes a couple of indices attached to adjacent boxes in the 
partition problem. In addition, one has 

p >~ xi>~O (3.2) 

tbr each variable. 
These inequalities define a convex polytope in a K-dimensional space. 

Indeed, each inequality defines a half-space and the intersection of all these 
half-spaces is a convex body, more precisely a convex polytope. This 
polytope will be denoted by .~th'l. It is included in the hypercube jgth~ of 
vertices {(x;)t ~ ; ~ . ,  x;~ {0, p} }. 

To summarize, to each integral point of .~th'l there corresponds a set 
of K integers which satisfy the inequalities (3.1) and (3.2), an admissible 
partition and therefore biunivocally a tiling. Note here the important 
following point: the dimensionality K of the convex polytope is inde- 
pendent of p. When p varies, the external shape of the convex body is 
fixed, only its size varies. But, as will become clear in the following, since 
we are interested in a discrete feature on this convex polytope, it may 
require that p takes a minimal value in order that the complexity of this 
structure is fully taken into account (in particular when we dissect this 
polytope into simplices: Section 5). 

Now, let us study the properties of this convex polytope more 
precisely. 

3.3. Elementary Flips and Discrete Metric 

Two adjacent integral points in the configuration space represent 
tilings which are very close. Indeed, these integral points only differ by one 
coordinate and this difference is equal to one. In terms of partitions, all 
their parts but one are equal. Then, the corresponding tilings differ by an 
elemental 3, flip. Figure 4 shows such elementary flips in 3 ~ 2 and 4--* 3 
tilings. 

3 ~ 2 flip 4 --+ 3 flip 

Fig. 4. Two example of codimension-one flips. 
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This property enables us to define an interesting discrete metr ic  in 
the configuration space. Indeed, the "Manhattan" distance between two 
integral points in the convex polytope is the minimal number of elementary 
steps needed to go from the first point to the second one. Then, if one con- 
siders the two corresponding filings, this distance represents the minimal 
number of elementary flips needed to go from the first tiling to the second 
one. 

Moreover, all the different paths in the configuration space that go 
from a first integral point to another represent all the minimal sequences 
of elementary flips that link the two corresponding filings. So this analysis 
in terms of partitions and configuration space gives an interesting represen- 
tation of flip dynamics in random filings, at least for codimension-one 
tilings. Note that the number of different flip paths going from one tiling 
to another is supposed to play an important role in the theory of self-diffu- 
sion in quasicrystals (P. Kalugin, private communication). 

This discrete metric is a very interesting advantage of this partition 
approach of filings. Indeed, in the tiling space, appropriate sequences of 
flips can move vertices arbitrarily small distances. But, in our configuration 
space, the corresponding tilings inherit a finite, discrete distance. 

3.4. A Remark on the Shape of the Conf igurat ion Space 

An important class of tilings are those whose boundary side lengths 
(including p) are approximately equal (for example, if we have a hypersolid 
partition on a k~ x k2 x ... x kd d-dimensional array, this corresponds to 
kj  ~ k2 ~ . . .  ,.~kd,~ p). 

Then, let us show that under these conditions, all the integral points 
in the convex polytope lie on its boundary (or, in other words, that its inte- 
rior is empty of integral points). We therefore need to show that for any 
integral point in the convex polytope, at least one of the inequalities (3.1) 
or (3.2) between the x; is in fact an equality. That is: all these inequalities 
cannot be simultaneously strong. Indeed, in the partition language, the two 
constraints that all the inequalities between the parts be strong and all 
these positive parts be strictly smaller than p are not compatible (excepted 
for very sm~tll values of the side lengths). 

We shall see in Section 4 that this can be expressed in terms of roots 
of a particular polynomial. Note, however, that this is due to our boundary 
conditions: it is always possible to change them slightly in order to allow 
interior points. But this will not significantly alter the extremely elongated 
needle shape of this configuration space suggested by the zero integral 
volume of its interior. 
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3.5. The Simplest Example: Linear Partitions 

Consider the linear (or one-dimensional) partition problem: 

p~>xl~>x2~>-.- ~>XK>~0 

Then the configuration space is a simplex, that is, the K-dimensional 
convex hull of K +  1 points. More precisely, 

.~thl  = Conv(Ao, A t ..... AK) (3.3) 

where Ak is the point of coodinates 

(p ..... p, 0 ..... 0) 

k times 

This convex polytope is denoted by ~[x] .  Section 4.2 and Fig. 5 provide an 
example. 

Then we prove inductively on p that the integral volume of this 
simplex is ~tt'+K~'K ,. for K = I ,  Card{x~Z/p>>,x>~O}=p+l=(~'+ll )," and if 
the relation is true for a given K, then 

Card{xi~Z/p>~x I>~x2>~ ... >~XK+ 1>10} 

P 

= ~ Card{xi~Z/xt>~x2~>x3>~ ...  >~XK+,>~0 } 
A'I = 0 

A" = 0 

_(p+(K+ 1)) 
\ K + I  | 

This example, although rather trivial, will be useful in the following 
since this kind of simplex will appear as the fundamental component tbr 
the decomposition of general partition convex polytopes. 

4. COUNTING INTEGRAL POINTS IN THE CONVEX POLYTOPE: 
TOOLS 

Counting integral points in a convex polytope is a topic that has 
already been tackled by several mathematicians. Much progress has been 
made since the pioneering work of Ehrhart in 1964 ~22"231 (for a general 
review, see ref. 24). However, there are still many unsolved questions. 
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Moreover, the convex bodies we are to study here are very particular 
among the large class of convex polytopes, and some specific tools will be 
developed. We shall first present briefly some standard combinatorial 
methods before detailing the more specific properties of our polytopes. 

4.1. Ehrhart  Polynomial  and Reciproci ty  Law 

Given a convex polytope .~-, the fundamental property required to use 
the previously developed theories is that its vertices are themselves integral 
points. 

Then, we can define P.~(p), the Ehrhart polynomial of -~ .  It gives the 
number of integral points that lie in p ~  [ ={px, xe..~}] (including its 
boundary), where p is an integer. This number of integral points is also 
called the integral vohune. The polynomial character of the integral volume 
has been established by EhrhartY 2-''24~ Its degree is the dimensionality of ~-. 
Note that P .~(0)=  1. 

This polynomial has a very nice property, called the reciprocity law: 

Reciprocity Law. If the polytope o, ~ is K-dimensional, if p is an 
integer, then ( -  1 )K p , ~ ( _ p )  is the number of integral points in the interior 
of p.-~- (i.e., excluding the boundary). 

Remark. Thanks to the discussion of Section 3.4 about the interior of 
the convex polytope, we can claim that, with our boundary conditions, the 
values of p considered in Section 3.4 (p~kz) are roots of the Ehrhart 
polynomial. 

Note that if (~'+~ k) is understood as the polynomial function (even 
for negative values of p): 

p + K - k ) _ ( p + K - k ) ( p + K - - k - 1 ) . . - ( p - k + l )  (4.1) 
K! 

then any polynomial P ctxj(p) can be written likewise: 

P ~[~j(p) = a~. 
k = 0  

(4.2) 

with suitable a~.. [Indeed, let us prove that given a polynomial P,~rK~(p), 
the ak may be chosen so that the two polynomial expressions of (4.2) are 
equal. Since the degrees of these expressions are K, it is sufficient to find the 
a k so that the two expressions are equal for K +  1 values p: 0, 1 ..... K. 
If p = 0 ,  all the binomial polynomials vanish, except the first, that is, 
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.+K~ 1. Since P.~tKI(0)= 1, ao 1. If p---1, only the first two binomial 
polynomials have a nonzero value: we must have P~tA.~(1)= ao (K~)  + a~. 
Knowing P~lA.l(1), we hence get the value of a~. We understand that, 
inductively, it will be possible to chose all the values of the ak by setting 
successively p to the values 0, 1 ..... K. We note here that the ak are 
integers.] 

Notation. 
X';,(p), so that 

For reasons that will appear later, we shall write (r,~,,)= 

K 

P~l~l(p) = Y', akX~,~ I,(p) 
k = o 

4.2. Specific Definitions 

If So is the point (p, p ..... p) of the hypercube ..y#tK], we propose the 
following definitions: 

Extremal Face of the Hypercube. A face Jg (of any dimension) 
of the hypercube ~gCK] is called an extremalface if it contains So. 

Extremal Face of the Convex Polytope. A face ey of the 
convex polytope ..~[~-1 is called an extremalface if there exists an extremal 
face of jgr  x] of the same dimensionality as the face ~ that contains ..~. We 
will denote by Zf(-~) this face of j#LK]. 

We shall see later that these extremal faces are deeply related to the 
structure of the convex polytope. 

Notations. T ,  (resp. T~)  is the set of the extremal faces of .yf[x] 
(resp. /7Ix]) .  V,, (resp. V~) is the set of the vertices of X tx] (resp. ,~[K]) 
(note that here, by vertices, we restrict consideration to the integral points 
which are at the extremities of the edges). 

jf[,~] (resp. ~ t , / ] )  is any q-dimensional extremal face of j f rK]  (resp. 
.~LK]). The role of the exponent q is to specify the dimensionality of 
the face. It does not single out any q-dimensional face among the others. 
Note that {So} = Jt<~q = . ~  t:~q and that J.t ~ and .~[K~ are themselves 
extremal faces. These faces being the only 0-dimensional or K-dimensional 
faces of the cube or of the convex polytope, the notation is here perfectly 
unambigous. 

We also define the weight of a vertex: it is the sum of its coordinates. 

Example. Examine the 2--*1 c a s e :  p~xt~X2~x3~O. With the 
above notation, K = 3 .  o~[~'] is a tetrahedron and jgl:h] is a 3-cube 



(Fig. 5). Moreover, V.~ = {(0, 0, 0), (p, 0, 0), (p, p, 0), (p, p, p)}. These 
elements are of respective weights 0, p, 2p, 3p. And T~ contains for 
following four sets: the vertex (p, p, p), the edge {(p, p, 0), (p, p, p)} ,  the 
triangle {(p, 0,0), (p ,p ,O) ,  ( p , p , p ) } ,  and the tetrahedron itself. Note 
that, for instance, the lace x2 = p  does not contain an extremal face of 
..~131 since it is 2-dimensional and its intersection with .~L3j is only 
1-dimensional. 

We can now define the map q~, which will prove to play a fundamental 
role in the following (see Section 5.4): 

T.~I--*Vg 

qs: :~ff (,/] ~ vertex of J t  r'l:l of minimum weight 
(4.3) 

3 

This minimum-weight vertex, called the origin of ~gEu], is the point of the 
l:ace that is the closest to the origin of the space O. Then, one can easily 
check that q5 is bijective and that 

qs-~: (x, ..... x, .)~ V,~ ~ {(),~ ..... y x ) e , ~ [ t " l / V i ,  ),,>~x,} (4.4) 

Note that q~ is an isomorphism between the posets (partially ordered 
sets) (T~ ,  c )  and ( V ~ ,  >1 ) in which i f(xj  ..... xl,.), ()h ..... y x ) ~  V ~ ,  then 
(x~ ..... X x) >~ (y~ ..... y~,.) if and only if Vi, x i~>y;. It is worth emphasizing 
that this order relation will also play quite an important role below. 

1 
Fig. 5. 

2 
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The convex polytope of the 2 ~ 1 problem: x~ >/x2/> x3. 
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Now, we have the following property, which establishes a one-to-one 
correspondence between the extremal faces and the vertices of.~EKl: r can 
be restricted to a bijection between T~ and V~. Not only does "restricted" 
mean that the bijection is between the restricted sets T~ and V~, but also 
that the extremal faces of the hypercube are restricted to extremal faces of 
the polytope [this last technical consideration comes from the fact that 
even if .~ c Yf(.Y;), .~ might be different from Yg( -~)] .  

In other words, the above property means that a face of .~-r~"J is an 
extremal face if and only if its origin is a vertex of ~-[~1. Or that r induces 
an isomorphism between (T~ ,  c )  and (V,; ,  >~ ). 

Let us now prove it: let .~-M be a q-dimensional extremal face. 
. ; r  [,~1 ) (that is, the extremal face of J f  [ x l containing .~ ~ '~1 ) is defined by 
some relations x ~ = p  for i ~ I o c { 1 . . . K }  [ C a r d ( l o ) = K - q ] ,  and for 
j r  xi~ [0, p] .  If for some i~lo and some j ~  { 1 ... K} - I o ,  there existed 
an Eq. (3.1)-like inequality x~<~Xj, then we would get x j = p  and ,y;[,H 
would no longer be a q-dimensional extremal face. Then no such inequality 
x~<~x/holds. Hence .~'r,H is defined by x~= p for ie lo  and by inequalities 
between the remaining variables XJ. Then the origin of j f ( . ~ M ) ,  the coor- 
dinates of which are x~ = p for i e  L, and X~= 0 otherwise, also belongs to 
.~q l .  It is therefore a vertex of ,~-r~,] 

Conversely, it can be checked in a similar way that a vertex of the 
convex is always an origin of an extremal face of jp[xl 

For instance, in the above example, the origin of the triangular 
extremal face is the vertex (p, 0, 0). As far as the poser (V~,  />) is con- 
cerned, note that it does not depend on the value of p, since its shape does 
not depend on p (see the end of Section 3.2). We denote this poset (or its 
graph) by T. 

4.3. Structure of the Graph T 

Our aim here is to describe the structure of the graph of the poset T 
of a given partition problem. We will show that this structure is deeply 
related to the convex polytope of a partition problem of lower dimension. 
This rather subtle relation will be at the heart of our powerful algorithm 
to compute the integral volumes of configuration spaces, as will be shown 
in the following. 

First of all, it is necessary to understand the link between the d + 1 -~ d 
case with p = 1 and the corresponding d-~ d -  1 case. 

Here we use again the notation defined at the beginning of Section 3.1: 
x~, ...... J instead of x~. Remember that x~, ...... J is the variable of the box of 
coordinates 0q ..... ~,/in the original d-dimensional space. 
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If p =  1, then, given ( x . ,  ...... ,1)" each of  them in {0. 1}, we define new 
coordinates  X~, ...... ,_,: if c~ I ..... aa are fixed, X~, ...... , / ,  is the number  of  
variables x., ...... ,i , . . , r c td=  1 ..... kd. that  are equal to 1. i.e., 

k d 

X9;1 . . . . . .  ,1 I = Z X x  I . . . . . .  d_  i-~x d 
:t d = I 

Figure 6 shows an example of  such a situation: here d =  2. The 3--* 2 
case with p = 1 becomes a 2 --* 1 case. 

One unders tands that the X~ define a new ( d -  1 )-partition of  height ku 
because if 

(~ ,  ..... ~ . - , )<<- (~ ' l  ..... o~',1 ~) 

then for all ~,le { 1 ..... ku}, 

( t h a t  " " - <  ' IS, VI, o~ i ~ ~x i ) 

then 

k , I  k d 

Z ...... Z ...... 
~,1 = I St d = I 

and finally 

X~', ...... ii-, ~X~, ...... ,/-, 

Conversely. given the X~, ...... , ,, the xi are defined by x~, ...... ,1=1 for 
eg I = 1  ..... X~, ...... ,i-, andx~ t  ...... ,1=0 fo r~ , /=X~ ,  ...... , - , + 1  ..... k , r  

Now. it must  be unders tood  that  the vertices of  the graph T [ tha t  is, 
the graph  of  the poset ( V ~ .  <~ ). or ( V  c ,  >~ )] are exactly the vertices of  
the d ~  d - 1  convex polytope. Indeed. in 7". two vertices A and B are 
linked if the former is greater than the latter and more  precisely if A is j u s t  

aboue  B.  This means that  A < B  and if A ~< C~<B, then either C = A  or 

Fig. 6. 

3 2 0  

The 3 ~ 2 partition with p = I and the corresponding 2 ---, 1 partition. 
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Fig. 7. Graph of a 3 ---, 2 problem k = / = 3: its vertices are the integral points of the 3-dimen- 
sional simplex of side 3 of the 2-~ I problem in the case k =3. The arrow on the graph 
indicates ~lle direction of the order rehttion. 

C = B. Let us recall that  the graph  does not  depend on p. Hence take p = 1. 
In this case, it becomes clear that  A(x~ ..... XK) is just  above B(y~,...,y~,.) if 
and only if there is a unique (~t ..... ~,/) such that  x(~, ...... ,,~,/:y~, ...... ,,~ and 
then x~,.....,,t~=O and )'t~ ...... ,t~= 1. [ Indeed ,  if there should exist two 
(~t ..... ~a) and (ill ..... fla) such that  x ~  ...... ,/~4:),~, ...... ,,~ and x~/q.....l~,,~r 
),~/~,...../j/, the values would be x(~,.....,,,~=O, x(/~,...../~,,=O, y~,. . . . .~= 1, and 
),c/~,...../,.,~)=l. Then the point  C(:~ ..... z~,.) such that  z~, ...... , ~ = 0  and 
zt/~,...../s,) = 1 would satisfy A < C < B .  which cannot  be.] 

Concerning the X~, one gets X~, ...... ,, L I = Y~, ...... ,, , ~ - 1 and Xj = Yi for 
the other  variables. This means  that  the cor responding  points  of  the convex 
polytope  of the d--* d -  1 case are two neighbor pohTts linked by a bond of  
the hypercubic lattice. 

Hence, the graph o f  the d+ 1 ~ d case is the set o f  mtegral points o f  the 
convex polytope o f  the d--, d -  1 case, these poh~ts behTg linked by the 
natural bonds o f  the lattice. The side of  this po ly tope  is k,~. 

Figure 7 illustrates the above  property .  

5. COUNTING INTEGRAL POINTS IN THE CONVEX POLYTOPE: 
ADDITIVE FORMULAS 

The goal of  this subsection is to explain the occurrence of  additive 
formulas.  The  existence of  such formulas  was previously ment ioned  ~"~~1 
and specific examples  were given. These additive formulas  will p rove  to 
be a useful tool in the enumera t ing  process, since the descent theorem (Sec- 
tion 5.5.2) will provide an a lgor i thm to build these formulas.  

We call an additive (b inomial )  formula  an exact enumera t ion  of  parti-  
t ions written as a sum of binomial  coefficients. For  example,  if the n u m b e r  
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of partitions of any D--* d problem is denoted by W t~-'/, then the Ehrhart 
polynomial of the 3 -~ 2 problem k = 3, /=  5 is 

= (1515P) +40 (14 +p" ~ 12 +p'~ \ 15 j + 4 0 0 ( 1 3 1 5 P ) + 1 4 5 6 (  15 J 

+ 2212 (11 +P'~ + 156 (1015P) 15 / +400(9~5 p)  

+ 4 0 ( 8 ~ 5 P ) + ( 7 ~ 5  p)  

For the 4 ~ 2 problem k = 2, /=  2, m = 3, one finds 

W4.T.3=50(PT16)+1281(PT15)+9775(P;614 ) 

+32304(P1613)+53175(P1612)+46343(PI611) 

+22095(P+1610)+5755(P~69)+774(P~68 ) 

+ 4 7 ( P ~ 6 7 ) + ( P ;  6) 

Similarly, the Ehrhart polynomial of the 4 --, 3 problem k = / = m = 2 is 

" W2.2.;_ ( p 8  8) (p + 7) + 24 (P 8 6) 5) 4) 4 -~=  +11 8 +11 ( P 8  + ( P 8  

As will become clear below, these additive formulas have a simple 
geometrical meaning: counting partitions amounts to counting integral 
points in a convex polytope; this polytope is dissected into particular sim- 
plices, which are then enumerated; and the numbers of integral points 
in these simplices are given by binomial coefficients. Two main cases are 
discussed. Either every simplex has the same dimensionality K, the dimen- 
sionality of the convex polytope itself, and varying edge lengths, or the 
simplices have varying dimensionalities. 

Since this section contains tedious calculations, it is built so that the 
reader can first skip Sections 5.1-5.4, which contain rather technical points, 
while going on to the rest of this paper. Moreover, several technical proofs 
are given in Appendix A. 
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We first develop recursive geometrical formulas which give hints about 
the inner structure of the convex polytope. 

Then we build an inclusion matrix and develop a first algorithm to 
count integral points: the inclusion matrix method. This algorithm is then 
interpreted in terms of simplices. Only these last geometrical results are 
exposed in Section 5.5. 

We need the following definitions: 

K-Dimensional Normal Simplex. Let E be a K-dimensional 
Euclidean space in which the tiling configuration space is embedded. Let 
(eL, e2 ..... e~,.) be the orthonormal basis of E which generates the Z x 
lattice. A K-dimensional normal s#~lplex of side s (E N) is a simplex 
Simp(A,~, A I ..... A~-) such that: 

�9 Each A i is an integral point. 

�9 (AiA~+ i)i=o.....h--t is an orthogonal family. 

�9 AiA~+~ is parallel to a vector e k for any i. 

�9 IIAiA~+,[I = s  for any i. 

Note that, up to translations, there are K! different such normal sim- 
plices of a given side length. They correspond to all the possible permuta- 
tions of the basis vectors. One of them is the convex polytope of the linear 
partition problem p >~ .x'a >~ x2 ~> ... >/xh- ~> 0. 

q - D i m e n s i o n a l  N o r m a l  S i m p l e x .  Let q<K be an integer. A 
q-dimensional normal s#nplex is a q-dimensional face of a K-dimensional 
normal simplex. 

We prove in Appendix A.1 that the Ehrhart polynomial P,,t,,j(s) of 
any q-dimensional normal simplex ,~[ql is 

P v~,,~(s)=(qq s) 

The idea of the proof is essentially that the integral volume of such a 
simplex is the same as the integral volume of the convex polytope of a 
suitable linear partition problem. 

5.1. Recursive Formulas 

Let us give a first recursive formula which links the integral volume of 
any face ~[,/iI with the integral volume of its extremal subfaces: 
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First Recursive Formula.  Let ~t,~] be any q-dimensional extremal 
face of -~[xJ. Then 

P.r ~ P,~t,i(P- 1) (5.1) 
. ~  [r l  �9 T.;[,II 

That is, the Ehrhart polynomial for any extremal face is simply the 
sum of the Ehrhart polynomials (with p decreased by one) of the extremal 
face itself and its extremal subfaces. 

To prove the above formula, it is convenient to prove it first for the 
hypercube itself. Let us denote by .4~ the set of elements of jgth-j that have 
exactly c~ coordinates equal to p (.~, is the hypercube itself with edge length 
reduced by one). Then 

disi .  
K 

.y, l t  ~:l = U ~d,,, 

It is less evident to realize that the number of integral points in ~ (which 
we denote for simplicity P</,) satisfies 

P<,;= Y' P,(~- , ) ( p -  1) 
x t . [ h -  ~] 

which proves the formula for the hypercube. 
From a combinatorial point of view, the formula arises from writing 

pa = ( 1 + (p - 1 ))~ and noting that the number of a-dimensional extremal 
faces of a K-dimensional hypercube is given by (~). 

Now, the above recursive formula for ..yl ai arises from the formula for 
the hypercube i f [ x ]  by considering the definition of extremal faces of.~-[ ~,1 
and intersections between .~th] and AZF tK]. 

Figure 8 illustrates this first formula in the case where .~-t~:) is a 
tetrahedron, already discussed in Section 4.2. 

Now, it must be emphasized that an extremal face is nothing but a 
particular case of the general convex polytope .~-t~]. Indeed, when we 
stressed the link between extremal faces and their origins (Section 4.2), we 
saw that the. "free" variables (x i such that iCL;) obey inequalities, exactly 
as in the general case. That is why we can use the Ehrhart polynomial of 
an extremal face and the notation T~r,,). Moreover, the above proof for 
.~l:K:i can easily be adapted to obtain the first recursive formula for any 
q-dimensional extremal face. 

In the above formula, the problem of multiple counting was treated in 
terms of a disjoint union and therefore in terms of a sum of positive terms. 
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A3 
O 

(a) 

I X3 X 2 
A t A 2 

Fig. 8. The integral points in .~[31 (see again the example of Section 4.2) Ibr p = 3 are either 
in the convex polytope defined by p =  2 (al or have at least one coordinate equal to 3 (bJ. 
In this latter case, the points have one, two. or three coordinates  equal to 3 and are then 
respectively in .~t~, .CA, or ..~/a (note that we have extended here the notat ion .~t, to the sets 
of elements of .7  ( h I that have exactly ~ coordinates  equal to p ). Then P ,,-~ ~ ~l 3 ) = P . ; ~ (  2 ) + 
Card( .~tl ) + Card(. ,~1,_ ) + Cardl .r/~ ). 

But it is possible to write a similar formula in terms of an alternating sum, 
via the inclusion and exclusion principle, ~~ in a way that will not be 
discussed here. 

As a conclusion, this method provides a first algorithm to compute 
the first values of P.r with a recursive method, the recursion index 
being p: 

�9 I f p  =0 ,  for all .~t,n, P.r  1. 

�9 Suppose all the P.r are known for a given Po and for all yt,~t 
(the extremal subfaces of .~l h'l). Using the graph T and the recur- 
sive formula, one can calculate successively the P ct,,~(Po+ 1) for 
q = 0  ..... K. 

5.2. The Inclusion Matr ix  

Let ~ be another notation for .-7 tq:t with the following indexing rule: 
if . .~=.~ ,  then i>j .  For example, .~-~ ,~[h'l and if N is the number 
of extremal faces, .~v = {S.}. We denote by Pi the Ehrhart polynomial 
of :'~. 

I n c l u s i o n  M a t r i x .  The uwlusion matrix ,#=(a , . / )  is an N x N  
matrix such that if .~ c .~, then ai/= 1, and otherwise a;i = O. 
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1 

3 2 4 

1 2 3 

(b) 

Fig. 9. (a) An example of the graph associated with a partition problem. The indices of  the 
vertices are the indices of the corresponding faces. A face is contained in the above face in tile 
graph. (b) As stressed in Section 4.3, this graph is equivalent to the convex polytope of 
the 2 ---, I problem k = p = 2, which consists of integral points inside a triangle of side 2. 

Example. If one considers the graph (which corresponds to the 3 --* 2 
case with kt =k_, = 2) of Fig. 9, the inclusion matrix is 

/1 1 1 1 1 lli\) 0 1 1 1 1 1 

0 0 1 0 1 

0 0 0 1 1 
0 0 0 0 1 
0 0 0 0 0 

Then, according to the first recursive formula (5.1), we have the 
following result: 

PI(P) \ 
P2(P) ) 

P,~}p)/ 
= , . , f / x  

! Pl( p - 1)\ 
P , ( p -  1 ) ) 

PN(P - 1 ) /  

and then 

�9 = . .  

\pN}p)/ 
= JW' x (5.2) 

S22 87 3-4-t7 
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5.3. Development of the Inclusion Matrix Method 

5.3.1. New Polynomial Formal ism.  We present here a first 
approach toward the coefficients a k (introduced in Section 4.1), using the 
inclusion matrix and later a modified inclusion matrix. 

Recall that Xqq-*(p) =-(r+q-'h,/ ,. The key idea in this section will be to 
build new polynomials, in the variables Xq, associated with the extremal 
faces. We shall see that these polynomials also follow a recursive formula, 
which can be put in a matrix form. 

Even though it is wrong to write X,~. XII = X~ +/, we shall give a 
meaning to the product of such polynomials. EThe exact reason for the 
above prohibition is that the morphism (r +~-k) ~ Xil-k, which transforms 
polynomials in p into polynomials in Xq, is a vector space morphism and 
not an algebra morphism.] 

Given the formula 

(p:n)  (p+n~=(p+n+l 
+ \ q + l J  q + l  ) 

n - -  Ii + I Ii we let Xq-(Xq+t-Xq+l). We can then legalize the writing 

X,i (X,/+l 1)X" q+l (5.3) 

taking care that it is not a real product of the corresponding polynomials 
in p. 

If a polynomial P~t,,i is written in terms of the X~-k and if we want 
to write it in terms of the yq+~-k, --q+t we must then use the substitution 
defined by Eq. (5.3). More generally, for any qo> 0, we have the following 
substitution equation: 

Xq (Xq+q,)- 1) q`) X" (5.4) 
q + q o  

which is related to the following identity between binomial coefficients: 

( q ) ,io _t(qo~(p+n+l) 
P " = E ( - 1 ) ' , , ,  

t=o \ l J\ q + qo 

Note again that one must be cautions with these notatious. Indeed, we 
could be led to write X',~=(X,~+ ~--1)X',~+, and X',~+, =(X,/+2-1)X~,~+ 2. 
Hence X',~=(Xq+,-1)(Xq+2-1)X',~+2. Now, Xq+l=(Xq+2-1)Xq+ 2. 
Replacing Xq+t by its value, we would get X',~=(Xq+2-X,I+2-1) 
(Xq+2-1) X',~+2, which is wrong. The only legal formula is Eq. (5.4), and 
it must not be used in a product of polynomials, but only after having 
written this polynomial as a sum of monomials. 
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Thanks to Eq. (5.4), we can write now 

Y a ,  X ~ j = y a , ( X , , + , , , - - I ) " X  ~,, + ,,,, = ( X , ,  + ,,. - I ) "  Yak X~ +,,,)(5.5) 
k k k 

The interest of this equation is that it can be used to write in another 
way the first recursive formula (5.1). We need first to introduce a new nota- 
tion: if the polynomial P~t,a is written in terms of elementary polynomials 

X h- X,~ [i.e., in the basis ( ,~)k~z], P..~f,,1(P)=~xI, XI,~(P), then . ~ , j  is the 
polynomial (in X) defined by ~r Z ctk X~. We have the following 
result. 

Second  Recurs ive  Formula. Let ,~-tq~ be any extremal face of 
,~-t K]. Then 

.~)~,,)(X3 = ~ ( X -  I)'I - " -  '(b~.~tq(X)) (5.6) 
,~[' , ' l  ~ Tr 

r-<q 

A proof of this formula is derived from the fist recursive formula in 
Appendix A.2. 

Before going on, we note that the definition of ~s,)l is ambiguous. 
Indeed, P{ s.I = 1 = ((~). But we could as well write P I s.) (P) = (p  +o k) = Xo(p ) k  
for any k, since the result would anyway be 1. Yet, for a one-dimensional 
extremal face, we know that P.r so that . ~  u = X .  
The coherence of the second recursive formula implies that 

.~ s,,l (X) =X (5.7) 

Example. Let us try and apply this formula to the example of 
Section 5.2: we can write successively 

.~(x) =x 

.~(x) = ~(x) = x+ (x- I )x= x 2 

~ ( X )  = 2X~- + (X - 1) X + ( X -  I) 2 X = X 3 + X  2 

~t(X~ = (X'3-t- X2) q- 2(X - 1) X 2 + ( X  - 1) 2 X+(X- -  1) 3 X : X 4 - - ~ - X  3 

so that P.~tx~(p)=(P~4)+(P~i3); ao = 1 and at = 1. 
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5.3.2. Modif ied Inclusion Matr ix .  In order to express the 
second recursive formula in matrix terms, we now need to define a modified 
inclusion matrix. 

Modif ied Inclusion Matr ix .  The modified inclusion matrix is the 
N •  matrix of strict inclusion (that is, the matrix Jr with a ; ; = 0  instead 
of 1) in which the last term aNN is replaced by ( X -  1). It will be denoted 
by JI~t(X) or or 

In the above example (i.e., the example of Section 5.2), we get 

lO 1 1 1 1 1 \ 

) 0 0 1 1 1 1 

0 0 0 0 1 1 
0 0 0 0 1 1 
0 0 0 0 0 1 
0 0 0 0 0 X - l /  

Matr ix  Formula. .~tA.](X) is X times the coefficient (1, N) of 
[..Y(x)] ~. 

To understand this, one must look at the second recursive formula for 
any extremal face ~[,~1: if, recursively, one replaces again 5~tq by its 
expression in terms of the .~t.q, where .~-t.~l is a srict extremal face of 
.~[,q, one gets 

E ( X - -  1 )q-  s -  2 "~vhl 
.*/[q] c.~[d c.~[ql 

x . < r < q  

Now s < r < q implies s ~< q - 2. So we understand that if we go on iterating 
this process, we will have a sum over chains of strict inchlsion that will 
necessarily end up with {S,,}, that is, {So} c.-~[ '1 c . . .  c ~ t . , J  c ~ - [ , J  c 
.~-[qJ, with 0 < t <  -.. < s < r < q .  And the sum is over all those chains of 
strict inclusion that begin with {So} and end with .~[":L Moreover, the 
coefficient in front of ~ s,,~ is ( X - 1 )  '~J~mt s , , I - ,=  ( X - 1  )'~ ~, where l is the 
length of the inclusion chain (which is the number  of extremal faces in it 
but one). Now we can consider that this inclusion chain is a chain of length 
q if we add to its beginning q - I  times {So}: 

{So} c . . .  ={So} c ~ - t , l  c ...  c .~t-,J c .~t ,a c .~t,,~ 
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And if we give a weight to each inclusion, that is, a weight 1 for each strict 
inclusion and a weight ( X - 1 )  for the only nonstrict inclusion allowed, 
{So} c {So}, the weight of the whole chain, that is, the product of the 
elementary weights, is exactly ( X - 1  )q-( 

Hence, .~.~-t,,J is X ( = .~ s,,I ) time the sum of the weights of all the inclu- 
sion chains of length q and that begin with { So} and end with .~[q]. As for 
.~r we have of course the same result with chains of length K. And it is 
a known result in combinatoric analysis (see, for example, ref. 31) that this 
quantity is given by the coefficient ( 1, N) of the Kth power of the weighted 
(i.e., "modified" here) inclusion matrix o,#(X). 

5.4. In terpretat ion in Terms of q-Dimensional  Simplices 

Our purpose in this subsection is to write the polynomial P.~thl as a 
sum of elementary polynomials and to interpret each elementary polyno- 
mial as the number of integral points inside a normal simplex (of variable 
dimensionality). More precisely, these simplices are proved to arise from a 
canonic decomposition of the convex polytope .~-tK]. Note that this inter- 
pret.ation is related to a first kind of additive binomial formula, since every 
elementary polynomial is a binomial coefficient. 

First of all, 

Xx.(Xh.--l)X'-q(p)=(Pq 1 ) 

To prove it, we can for instance use: 

(;)( )( ) (_l) th._ql_ ~. K q ( p + l ) + k  = p + l  

k=o K q 

Now (p,~ i) is the number of integral points in a q-dimensional normal 
simplex of side p +  1 - q .  Therefore the polynomial P.~tA-~ is a sum of 
elementary polynomials that are the number of integral points in simplices 
of variable dimensionalities. It is therefore natural to check whether these 
simplices should arise from a decomposition of the convex polytope ..~-txj 
into simplic~s of varying dimensionalities. 

In addition, in the proof of the mtrix formula, we considered strict 
inclusion chains of extremal faces, and for each such chain, we added a 
polynomial XK(XK--1)K-q(p), that is, as emphasized just above, the 
number of integral points in a simplex. Now recall Section 4.2 and the 
morphism ~. By this morphism, such an inclusion chain becomes a set of 
increasing sequence of vertices of the convex polytope. Moreover, the first 
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and the last faces in a chain are { So} and .~t  m, which correspond, respec- 
tively, to So and O. Hence the image of an inclusion chain by r exactly 
defines a normal simplex containing So and O. 

Hence the polynomial P~tA~ is a sum of elementary polynomials that 
are directly related to the numbers of integral points in simplices which are 
included in the convex polytope .~-t~,]. The complete proof  is given in 
Appendix A.3.2. 

Note here the fundamental role played by the one-to-one corre- 
spondence, established by ~, between the extremal faces and the vertices of 
.~-thk the matrix formula writes the number of configurations as a sum of 
binomial coefficients. These coefficients can be labeled by inclusion chains, 
which, through the mapping r are also simplices, and more than "labeled" 
by these simplices, these binomial coefficients turn out to be precisely the 
integral volumes of these simplices. 

Now that we have decomposed the convex polytope into simplices, we 
can also interpret the polynomial when it is written in terms of X and not 
( X -  1). Note that 3(* is in fact X~.(p), which is itself the polynomial/~,+*~ ~, K ~" 

And this quantity is the number of points in a K-dimensional normal 
simplex. We are therefore tempted to decompose the convex polytope as a 
set of such disjoint simplices of the same dimensionality. 

5.5. Decomposition into K-Dimensional Normal Simplices 

We have just seen in the previous section that the convex polytope of 
any partition problem can be decomposed into normal simplices of various 
dimensionalities. The goal of this part is to get a decomposition into 
simplices of the same dimensionalities. 

The main problem will be that in the decomposition in K-dimensional 
normal simplices there are interfaces between the simplices, as can be seen 
in Fig. 10. 

The integral points that lie on these interfaces must not be double- 
counted. Hence, some simplices in the decomposition must have faces sup- 
pressed, and we have to define precisely how these faces will be suppressed. 

5.5.1.  D e s c e n t s .  It can be proved (Appendix A.3.1) that in every 
case, the K-dimensional convex polytope of a partition problem can be 

Fig. 10. The gray area is all interface that must not be double-counted. 
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decomposed  into (nondisjoint)  K-dimensional  no rma l  simplices. This is 
called a normal decomposi t ion:  

. ~ [ K ]  = U 
O.~[K]<Mil = / |~2 < . - -  <A~K_I < S I I  

A, E: I ~:[K] 

Simp(O~l~h  A;,,A~_, ..... A;~._,, So) (5.8) 

Figure 11 provides an example.  
In order  to decide how to suppress the interfaces, we have to define 

the number of descents of a simplex: if 5e = Simp(Ao, A~ ..... Aa-) (Ao = O 
and A ~ = So) is a no rma l  simplex of a normal  decomposi t ion,  let eg~ denote  
the vector  of  the Euclidean space parallel to AkAk +~. Now,  in the sequence 
(io, i~ ..... i/,. ~), let n(Sr) be the n u m b e r  of  indices such that  ik>ik+t (the 
n u m b e r  of  "descents" of  this simplex),  and let v(k) denote  the number  of  
simplices of  the no rma l  decompos i t ion  such that  n ( ~ ) = k .  

In the example  of  Fig. 11, there are three normal  simplices, Simp(O, D, 
E, So), Simp(O,  A, B, So), and Simp(O,  D, B, So). The  three corresponding 
sequences of  indices are, respectively, (1, 2, 3), (3, 1, 2), and (1, 3, 2), and 
the numbers  of  descents are, respectively, 0, 1, and 1. Then v ( 0 ) =  1 and 
v ( l ) = 2 .  

5.5.2. Descent Theorem and Addi t ive Formulas. Given this 
definition, we are able to p rove  (Appendix  A.3.1 ) that,  if there exists a zero- 
descent simplex in the decomposition, a way of keeping t rack of double-  
count ing p rob lems  is to remove  j interfaces f rom every j -descent  simplex. 

A B 

A B 

o 

x2 " /D E 
E 

Fig. 11. A simple example with K=3: p>~x~>~x2>~O and p>~x3>~O (x 3 is "'free"). The 
convex polytope obtained is the t, nion of three normal simplices. Note: this is not a standard 
partition problem, and especially it is not related to a standard tiling problem, but it provides 
a simple nontrivial example of decomposition in 3D space. 
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In this proof, we also learn that if we remove j faces from a K-dimen- 
sional simplex, its integral volume becomes (P+~ J). 

Now we can write the following theorem: 

D e s c e n t  T h e o r e m .  With the above notations, 

P.~t~~(P) = ~ v(j) p + - J  (5.9) 
.i~(~ 

The proof is now straightforward: there are v(j) simplices that have j 
interfaces suppressed, and their integral volume is then U'+~'-0. I 

Equation (5.9) is the general form of the second kind of additive 
formulas. 

These descents were originally used by MacMahon q2t~ in a combina- 
torial context, whereas here they are given a geometrical meaning in terms 
of normal simplex decomposition. 

Remark. If we recall now Section 4.1, we see that Eq. (5.9) has the 
general form we had given if a j =  v(j}. We shall now use this notation aj 
instead of v(j). 

Remark. a i = 0 when j < 0. Moreover, there is only one permutation 
of the set { 1, 2 ..... K} with 0 descent; thus a~ = 1. 

5.5.3. Walks and Descents in the Graph T. In the previous 
normal decomposition, the K-dimensional simplices can be seen as walks in 
the graph T, going from the origin O to So. Indeed, any sequence 
O.~rA.j <Air <Ai_,< ..- <AiA._, <So  can be seen as such a walk, since it is 
a sequence of neighboring points of increasing weight. 

Moreover, we have seen (Section 4.3) that the structure of the graph 
of a partition problem is closely related to the structure of the convex 
polytope of a lesser dimension partition problem. 

These two properties can be combined to get the following: "The total 
number of simplices (Z  a/) in the decomPosition of the convex polytope of 
a d + 1 --. d partition problem is the number of walks in the conbex polytope 
of the associated d--* d -  1 partition problem between the extremal points O 
and So." 

We can now wonder whether the notion of descents is directly 
readable on these latter walks. If the variable indices of the codimension- 
one problem are chosen appropriately, the answer is yes. 

Indeed, let us suppose that these indices are compatible with the 
lexicographic 3 order upon the coordinates of the partition problem boxes. 

3 We recall that given two sequences u~, u2,.., and v,, r 2 ..... the first one is said to be greater 
tha,a the second one according to the lexicographic order  if. i ,  being the first index for which 
uh, v ~ v,., then uh > t%. 



Conf igurat ion Entropy of Codimens ion-One  Tilings 727 

That  is, using again the nota t ions  of  Sections 3.1 and 4.3, the index 
(i~ ..... ia) is supposed to be greater than the index (il ..... i'/) if it is greater 
lexicographically. 

Suppose that two successive steps Ai~--* A~,+,--+A~,+~_ define a descent 
in the d +  1 ---} d p r o b l e m  That  is, i f A ~ A ~ + ,  is parallel to ei~ and A~+, A~+: 
to %~ ,, suppose that  j~ > Jk +~  Then, in terms of  partitions, the vertices 
have coordinates  

Ak 

X/~ + ~ = 0 

XJk = 0 

A k + )  

�9 x;~+i = 1 X/~ +~ = 0 
i 

�9 , A k + 2  

If  we use again the nota t ions  Xi for the variables in the corresponding 
d--,  d -  1 part i t ion problem and if Jk = ( ~  ..... aa) and Jk + t = (/3~ ..... /3a), 
then 

Ak 
• / t l  ,'",It,/ 1 ~ a 

X~, ....... ,,-, = b 

A , + l  

X/t, .....It,,_, = a X/t,..../t,,_', = a + 1 

�9 , a k + 2  

X~L ...... ,/-I = b +  1 "Y~ ...... ,/ I = b +  I 

Now,  since (0 4 ..... eta) > (/3, ..... /3a), either (~, ..... ~a -  ,) > (fl, .... / 3 a - I )  or  
(~l ..... ct,t ,) = (fit ..... /3,i- ~) and a a - ,  > / 3 a -  t. But this last possibility leads 
to a contradict ion,  since (/3j ..... /3,/) comes after (~,,..., c~,t) in the graph. 
Hence (ct I ..... e t a - i ) >  (fit ..... /3,1-~), and we have a descent in the indices of  
the variables that  are increased by one in the d ~  d - 1  convex polytope. 
The converse proper ty  is straightforward: if (~L,.:., ~,~- ~) > (/3~ ..... /3,/- i), 

then (~, ..... cca- i, ~,/) > (/3, ..... /3,1-1,/3,1) 

5.5.4 Symmetry of the aj and Maximum Number of Descents. 
The following proper ty  is given a geometrical  p roof  in Appendix A.4 for 
any codimension-one part i t ion problem: 

S y m m e t r y .  There exists an integer M such that  for any integer j, 

a j = a M _ j  (5.10) 
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In codimension one, if we have a d +  1 ~ d  partition problem on a 
k~ x k2 • .. .  x kd d-dimensional array, then 

M=-kl  " k 2 " " k d - - ( k l  + "'" + k a ) + d -  1 (5.11) 

It is worth noticing that the proof  we give of this result is deeply 
related to Ehrhart 's  reciprocity law/24~ 

As a consequence, the greater j involved in Eq. (5.9) is M, since ao -- 1 
and a t - - 0  if j < o. M is the maximum number  of descents. 

6. C O U N T I N G  INTEGRAL POINTS IN THE CONVEX POLYTOPE: 
M ULTIPLICATIVE F O R M U L A S  

We recall here some multiplicative formulas, that is, formulas written 
as a condensed product of the generalized factorial functions originally 
defined in ref. 10. We first make precise the asymptotic behavior of these 
functions. 

6.1. General ized Factorial  Funct ions of Order m 

6.1.1.  D e f i n i t i o n .  They are defined by induction on m (m integer): 

General ized Factorial  Functions. 

k 

k!t"l = k ,  k![ '"l = I-[ J!t .... ,l (6.1) 
/ =  I 

Note that k ! [~]=k! .  

6.1.2. Properties. When we evaluate entropy, we need to know 
the asymptotic behavior of log k! r,,,] when k --, c~. We shall now prove that 
in this limit 

I~ltlftl 

log k! ~'"~ = ~ log k + ~,,,k'" + O(k .... ~ log k) (6.2) 
I17 ! 

where a,,, is defined by ao = 0 and the relation 

' (  , )  
c ~ , , , . l = ~  ~,,, (re+l)! 
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and where O(k . . . .  J log k) means  a function bounded  by A .  (k .... t log k), 
A > 0. Note  that  for m = 1, we recover  the two leading terms of the Stirling 
formula.  

The  p roo f  will be done  by induction on m: the assumpt ion  is obvious  
for m = O. I f  it is true for a given m, then 

where Ak 
and 

k 

logk!  I ' ' '+ ~] = l o g  I-[ J !t ' ' '] 
j =  I 

k 

= ~ log j !  t' ' '] 
. / =  I 

~ .... - c~ .... "~ - A = ( ~ l o g j .  ,,,j j +  k 
j ' =  I 

is bounded  by A - Y ~ = ~ j ' "  I l og j .  Hence, I A k l ~ B . ( k " ' l o g k )  

~fj 
"' \ 

log k! [' ' ' + t ] - -  I " ""' O(k"' = t ,n!  og j+o~ , , , j  ) +  l o g k )  
. / =  I 

Now,  this last sum is a lmost  an integral: 

:t j,,, ;+,.,,, ) , = ,  ~T~t!logj+o~,,,j'"= , ~,-~L!logx+~,,,x'" dx+b, 

Since the integrand is an increasing function for x greater  than a real c .... 

k ( ( j +  l ) m  

b,,,.<bk.< .Y" ,. 7,,i 
. I  = c m  

- - l o g ( j + l ) + o ~ , , , ( j + l ) ' "  ~ ' i l o g j  ot,,,j"')+b<.,,, 

~<(k+ ])"' 
177! 

- - l o g ( k +  l)+o~,,,(k + l)'" +b,.,,, 

= O(k"' log k) 

Moreover ,  

f 
x. + i / x'"' \ 

[ ' "  log x + o~,,,x'" l dx  = - -  
I kin! J 

k m + I 

(m + 1 )! 
log k + ~,,, + j k ' ' '+ i + O(k"'  log k) 
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where 

1 

~ m  + I - -  m +  1 
- -  (~x,,,- 1 

(m + 1 )!)  

Hence, 

k"' + i 
log k![,,,+ ~] 

(m + 1 )! 
k"' + J O(k'" - -  log k + ~,,,+ t + logk)  

We know the existence of a relation between the usual factorial func- 
tion and an analytic function, the F function. Similarly, one may wonder 
whether continuous functions can be defined which meet the generalized 
factorials at integral points. Such a function is already known for the 
second-order factorial function: the so-called "Barnes function. ''~28~ The 
generalization to higher orders is indeed possible along the same lines. 

6.2. Exact and Approximate Mult ipl icat ive Formulas 

The term W ' t+t- ' l  still denotes the number  of partitions of height 
k I , k  2. . . . .k , i .  p 

p on a k ~ x k 2 x  ... xk, i  hypercubic lattice (or the number  of corre- 
sponding tilings). 

We then have the following exact results: 

�9 2--+ 1 partitions: 

k! p! 

�9 3 ~ 2 partitions: 

~_~ ( k + l + p - 1 ) ! L 2 ] ( k - 1 ) ! t 2 1 ( l - 1 ) ! [ Z l ( p - l ) !  t21 
Wk.l.l, = ( k + p _ l ) ! t 2 J ( l + p _ l ) ! t 2 1 ( k + l _ l ) ! [ 2 ]  

The first formula is trivial. The second comes from a work of MacMahon.  c2~ 
It is rewritten here in terms of generalized factorials. It is in fact derived 
from the generating function: 

~, q,,,,~_ H(k  + 1 + p) H(k)  H(I) H(p)  (6.3) 
H(k +l )  H(k  + p) H( l+  p) 
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where the sum runs over all plane partitions n counted by W~,~z~, where 
w(n) is the sum of the parts of the partition [w(n)=x~ + ..- +xK]  and 

H(n) = [n - 1 ]!q [n - 2]!q. . .  [2]!q[ 1 ]!,/ (6.4) 

where [ n ] ! , =  [n]q[n-1]u. . .  [2]q[1],~ and I n ] q =  1 +q+q'-+ ... +q" '. 
When q = 1, we get the above formula for W 3-2. Note that we have a 
proof of this formula (for q = 1 ) directly derived from the Gessel-Viennot 
method !25'26~ (the idea is to consider a partition as the family of paths that 
separate regions where the parts are equal, and then to compute the deter- 
minant given by the Gessel-Viennot method). 

As for the 4--, 3 partitions, there is a generalization written with 
factorial functions of order 3. It is known to be only an approximate 
formula ~ ,~. 

�9 W 4~3 (k l+k2+k3+k4-2)![3]l-- l i<i(ki+ki-2)[[3]  
k,'k'-'k~'k4-- [~i<i<t(ki+ki+kt-2)![3] I-[i ( k i -  2)! [3] 

We shall discuss later the validity of this 4--* 3 result. A set of multi- 
plicative approximate formulas can similarly be proposed for all codimen- 
sion-one problems: 

I - I  ' '+ t  1[2] ] -L ,<~ . . . . . .  5 ( k ~ t + k ~  + " ' "  + k ~ - n +  1) ![ ' ' ]  
�9 . . . .  _ . . . . .  , 

" '* ' " '*""  1 --I'+.i=,.i . . . .  o[2]1-[;~<~2 . . . . .  ~(ki,+k~ + +ki, -n+l ) ! [ ' ' ]  

Note that these approximate functions are built so that they obey two 
important constraints: they are invariant under permutations of the k z and 
they reduce to the equivalent formula for one dimension less when one ki 
equals unity. 

7. C O N F I G U R A T I O N  E N T R O P Y  

By definition, the configurational entropy per tile is 

S = log( # configurations)/# tiles (7.1) 

We ar~ mainly interested in the configurational entropy per tile at the 
infinite-size limit: S " - a  is the limit of log( # configurations )/ # tiles when 
the boundary goes uniformly to infinity, with given ratios between the k~. 
The results given by our analysis concern tilings associated with standard 
partitions, which imply a specific type of fixed boundary conditions, con- 
taining an intrinsic phason strain, as opposed to the free or periodic 
boundary conditions: the present boundary conditions will be simply 
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denoted as f i x e d  in the following. In Section 7.3, more complex "phason- 
free" fixed boundary conditions will be briefly discussed. 

7.1. Fixed Boundary Entropy 

We can easily calculate S-"- 

S - ' -  I = - x t  log xl - x2 log x2 (7.2) 

where x; = kff(k~ + k , ) .  The S 3 -2  has been derived by Elser~7); it is a direct 
consequence of the formula of Section 6.2: 

$3_2 _ Z ~ = l  x] log x~--(1 --x~) 2 log(1 --x;)  (7.3) 
2X 

where x i = k i / ( k  t + k 2 + k3)  (k  3 = p) and X = x l  x2 + x l x3 + x,_x3. 
From the approximate formula of Section 6.2, we get an entropy 

formula which was proposed ~"u as an Ansatz for the exact entropy: 

S 4 - 3  = [ - L ,x i.3 log x; + )-" (x; + x~.) 3 .  log(x~ + x/) 
i = t < i, j )  

]/ -- ~ (1 - -x~)31og(1-x ; )  6X 
i=1  

(7.4) 

where 

k i  
(k4 = p )  

X i = k l  w k2 -i-k 3 + k4 

X ~ -  X I X 2 N  3 "4- X I X 2 X  4 -~  X I X 3 N  4 -~- N 2 N 3 X  4 

Similar formulas can be derived for all codimension-one entropies. 
Note that these entropies are maximal in the diagonal cases x~ = 1/ (d+ 1 ), 
and that they have a quadratic behavior near this maximum (see below). 

Our new geometrical analysis in terms of normal simplices enumera- 
tion enables us to add new exact enumeration values and their associated 
entropies. 

Before going on, we briefly discuss the algorithm used to make this 
new enumeration. It uses the Descent Theorem. But it is also closely related 
to the existence of the graph associated with the partition problem and to 
its simple structure (convex polytope of a 3---, 2 problem). The idea is 
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Entropy / tile 

0.173 �9 

o.16o I 

0.155 g 

0.152 *o 

0.139 I I I I :t 
1 2 3 4 k 

o: e x a c t  va lues ;  o: a p p r o x i m a t e  va lues  

H/4  �9 3 ~/ Fig. 12. Values of the entropy per tile of  the diagonal 4---, 3 case [log( k.,.~..k,/#tiles]. The 
exact values are calculated thanks to an algorithm derived from this analysis, whereas the 
approximate values come from the formula of Section 7.1; 0.139 is the expected infinite-size 
limit of this entropy. 

simply to attach a vector to each vertex of the graph, the vector of the 
partial aj's. For a given j, the partial aJ of a vertex is the number of walks 
in the graph that go from the origin to this vertex and that have j descents. 
Then we compute recursively the partial ai's of the vertices of increasing 
weight. For a given vertex, they only depend on the vertices that are one 
two levels above in the graph. 

The accessible values, which are several order of magnitude larger 
than the values obtained by previous methods, where the partitions were 
enumerated one by one, would be out of reach by a brute-force algorithm. 
They correspond to tilings of larger sizes (~,200-300 tiles). Table II gives 
some values and their corresponding entropy. The diagonal values for 
entropy are plotted in Fig. 12. 

Table II. Entropy per Tile in Some 4 -~3  Cases 

Number  of tilings Entropy No. of tiles 

I'V~.~..~.2 = 168 
W4.~3  = 17 792 748 

4 ~ Z  W,~.~.,i. _, = 6  188 212 000 
4 ~ ' ~  1"V4,4 ,~. 3 = 37 269 304 282 344 

W~.~.4 = 75 241 806 496 951 632 
4 ~ 3  W4.4.~. 5 =65  412 153 848 662 653 220 

0.160 32 
0.155 108 
0.141 160 
0.150 208 
0.152 256 
0.150 304 
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Table I I I .  Phason  Elastic Constants of the d +  1 -~ d P r o b l e m "  

d tro a 2 K 

I log2 - I/2 I/2 

2 3/2 log 3 - 2 log 2 -~ 0.261 9/4 log 3 -  9/2 log 2 - ~ -(I.669 - 3/2 log 3 + 3 log 2 -~ 0.431 

3 2 2 / 3 1 o g 2 - 9 / 2 1 o g 3 - ~ 0 . 1 3 9  - 2 4 1 o g 3 + l 1 2 / 3 1 o g 2 -  ~ -0 .489  6 1 o g 3 - 2 8 / 3 1 o g 2 - ~ 0 . 1 2 2  

" T h e  express ions  for d >  3 c a n  a lso  be  der ived.  

Note that although the calculated entropy for the (4,4,4,4) case goes 
toward the value given by the above Ansatz in the diagonal case, it 
nevertheless cannot be taken as a confirmation of this Ansatz. 

7.2. Fixed-Boundary Phason Elastic Constants 

The phason elastic constants ~8~ are calculated here for codimension- 
one partition problems. We use the exact results for d = 1 or d = 2, and the 
approximate results for greater dimensions. The entropy is maximal for the 
diagonal x;: .x'~/~ = 1/(d+ 1). We develop the entropy near this maximum 
entropy point, 

S~d+ i ~ d~(xlO~ + d x )  = t ro  + a 2 ( d x )  2 + " "  (7.5) 

where ~ dx i  = O. 

The numerical coefficients a~ are given in Tablel I I .  However, the 
usual definition for elastic constants K is given in terms of phason strain E 
defined, for example, in ref. 8: S = ao - � 89  2 + . . . .  One needs some algebra 
to express our elastic constants in this system of variables. For  instance, the 
3 ~ 2 constant is K =  - 3 / 2  log 3 + 3 log 2 "-~ 0.43 [whereas it is equal to 
2(x/~/2) n/9 ~-0.60 for the periodic boundary entropy per tile~lT'8~'4]. For 
the 4 ~ 3 problem, we find similarly K =  6 log 3 - (28/3) log 2 = 0.12. 

7.3. Entropy and Boundary Conditions 

As mentioned above, the entropies we get here (and therefore the phason 
elastic constants) are specific to the fixed boundary condition. Indeed, the 
partition viewpoint implies that those tilings which we enumerate are 
incribed in a polygon (or a polyhedron), the shape of which is a strong 
constraint: fixed ratios for the occurrence of the different types of tiles 

4 O n e  mus t  be careful  here wi th  the length  scales, bo th  in the  paral le l  space  a n d  in the 
p e r p e n d i c u l a r  space.  
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correspond to a given boundary condition, and these tilings of rhombi (or 
rhombohedra) have this property that the order imposed by the boundary 
penetrates deeply into the tiling bulk. ~7~ Consequently, the entropy itself 
depends on this boundary condition: for given ratios of the different tiles 
(a given phason strainCS~), the free (or periodic) boundary entropy can be 
several percent higher than the fixed-boundary one. This can be illustrated 
by the only tiling type which has been completely solved for both fixed and 
free boundary conditions: the 3--* 2 case. The fixed-boundary diagonal 
entropy per tile is 0.261, whereas the free one is 0.323 ~ 16) (the latter value 
refers to the ground-state entropy of the antiferromagnetic Ising model on 
a triangular lattice; and there is a one-to-one correspondence between this 
model ground states and the free-boundary 3---, 2 tilings). 

More precisely, this dependence of the entropy on the boundary con- 
dition can be related to the existence, in the fixed-boundary case, of a 
phason gradient in the neighborhood of the boundary. The next subsection 
is devoted to this point. 

Before going on, let us point out that the boundary conditions of the 
partition problems can be generalized in such a way as to produce phason- 
free fixed-boundary tilings. For example, in the 3 --* 2 case, this amounts to 
shifting from a rectangular to a hexagonal array and to modifying condi- 
tion (3.2). In terms of tilings, this leads to staircase-shaped boundaries, 
which then have a negligible influence toward the bulk. We have numeri- 
cally verified that the corresponding entropy matches the free-boundary 
value. But the price to pay is that we have not been able yet to apply to 
these partition problems the generalized framework developed throughout 
this paper. 

7.4. Link Between Free- and Fixed-Boundary Entropies 

First of all, let us state that the following analysis is not restricted to 
codimension-one tilings. The following calculations are deeply related to 
coarse grainhTg arguments. ~8~ We shall also use the membrane representa- 
tion of tilings: a D --* d tiling can be seen as a d-dimensional membrane in 
a D-dimensional space attached to a given frame. For instance, for a 3 ~ 2 
tiling, this frame is a (nonflat) 3-dimensional hexagon (see Section 2.5). 
Moreover, v~e shall make the essential distinction between facetted mem- 
branes and smooth membranes. 

�9 A facetted membrane is the exact representation of a tiling, with 
well-defined facets. 

�9 A smooth membrane does not represent one particular tiling, but a 
class of tilings, as discussed below. 

822,873-4-18 
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In addition, all the membranes will be analytically represented by the 
equation 7~i=(9i(yi), where the Yi are Euclidean coordinates on the 
d-dimensional Euclidean subspace on which the tilings are mapped, and 
the Z; are D - d  complementary coordinates. The function ~b is defined on 
a polygonal domain A, the boundary of which has the same shape as the 
usual polygonal boundary of tilings, but not necessarily the same size. 
Indeed, the side lengths of A are the ratios xi = k~/~ ki. The values of the 
function ~b on the boundary 0zl of zl are fixed so that the set ~b(aJ) 
represents the frame of the membranes. The fact that the membranes are 
directed ensures that ~b is always a single-valued function. In this viewpoint, 
the phason strain E of the membranes is given by V~b. The set of functions 
~b associated with smooth membranes is denoted by F. For  any number of 
tiles N, all the membranes are "rescaled" so that they are bounded by the 
above frame (that is, we choose to keep constant the sides of the domain 
3, while the tile sizes go to zero when N goes to infinity). 

Now, let a given smooth membrane be represented by the function ~. 
We call sl-q~] the entropy per tile associated with this membrane, which is 
defined as follows: 

s[~b] = lim log( #N-ti le  facetted membranes close to ~b) (7.6) 
N - - z  N 

We shall not discuss here the meaning of close. The interested reader can 
refer to the discussion by Henley, 4'~ and especially Section (6.1), "Coarse 
Graining." 

As a result, 

sEth] = I ,  dY a a(Vck) (7.7) 
V(zt ) 

where tr is the fi'ee-boundary entropy per tile associated with a given 
phason strain [the integral is divided by V(A), the d-dimensional volume 
of J ,  in order to get an entropy per tile]. In fact, we have smoothed the 
facetted membranes by integrating in s[~b] the short-wavelength fluctua- 
tions of the facetted membranesJ 81 

Consider now the class of fixed-boundary tilings with N tiles, N>> 1, 
the ratios of different tiles being fixed by the xi. Then, the number of such 
tilings close to a membrane m defined by ~b is e 'v 'H. The total number of 
tilings in this class is then 

# tilings = f4, ~ F e u.,'t,/,l @~b ( 7.8 ) 
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where @~b is a functional measure containing the information relative to the 
above-mentioned "closeness." 

Now we suppose that there exists a unique function ~b ..... on which s 
is maximum and that, near ~b ...... s[~b] has a quadratic behavior: 

se o l = sE r ..... ] -_I, d",, -1I, d". k(,,. . . . . .  ( u ) l e  . . . . .  + 
(7.9) 

where k is a positive quadratic form. 
Combining the above two equations and using a generalized saddle- 

point argument (the space of functions is infinite dimensional) and the cal- 
culation of a generalized Gaussian integral, we find for the fixed boundary 
entropy per tile S(xA 

S(xA= lim log(#ti l ings) (7.10) 
:v  - , ~  N 

--s[~b ...... ] (7.1l) 

independent of the nature of ~b.  Hence, the fixed-boundary entropy is 
given by the maximum of a functional s using free-boundary functions. 

Intuitively, this result can be explained by saying that the fixed-bound- 
ary number of facetted membranes is dominated by the number of facetted 
membranes close to a smooth membrane maximizing the functional s. 
Since this membranes close to ~b ...... are entropically dominant, the equi- 
librium state of this statistical mechanics problem is precisely ~b ....... and, 
owing to the boundary frame constraints, this latter membrane presents a 
phason gradient from the boundary to the very center of A. It is only near 
this center that the membrane is free, or, in other words, that its phason 
strain is equal to the free-boundary one. This viewpoint also clarifies in 
which sense the order imposed by the boundary penetrates into the bulk. 

Example. The simplest nontrivial example is again the 3---, 2 tiling 
problem. Ag described in Fig. 13, the domain A is hexagonal and the 
corresponding flame is a nonflat hexagon in the 3-dimensional space. 

In principle, the knowledge of the function cr enables us, for given 
ratios xi, to derive the fixed-boundary entropy. Theoretically, we are there- 
fore able to derive the fixed-boundary maximum entropy all x~'l and elastic 

~~r and constant K t~J from their corresponding flee boundary values a o 
K t~  and to invert these relations. Indeed, in the quadratic approximation 
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Fig. 13. In the 3 ---, 2 problems, the functions r are delined on a hexagonal domain 3 ofsides 
.vj, x2, and x3. Their values on the boundary azl are fixed so that the membranes are attached 
to the nonllat hexagonal frame composed of six adjacent edges of the rectangular 
parallelepiped. 

,rr �89 2 and the maximization of s[~b] on F is equivalent to (7 ~=- (9" 0 - -  

the minimization of 

frO] j" a),<'( v~ )-' 
v(a) 

This functional is easily minimized numerically. Figure 14 shows the 
representation of the 3-+ 2 function minimizing t[~b]. 

Remark. The solution of the minimization of t[4b] (or, in the quad- 
ratic approximation, the maximization of s[~b]) is given by Os[ck]/O4J=O, 
where Os[ck]/~gck is the functional derivative of s[4b]. This last equation 

1 
Fig. 14. The 3 --* 2 membrane minimizing t[~)] (quadratic approximation). 
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implies A~ = 0. It must be solved with the boundary condition imposed by 
the frame. Hence, since A~b = 0 is the equation of a minimum surface in the 
approximation of small gradients, the present problem is related to finding 
minimal surfaces attached to a fixed frame, 

The above considerations relate completely the fixed- and flee-bound- 
ary problems. Of course, the precision of the so-obtained numerical values 
depends greatly on the validity of the quadratic approximation used so far. 
Unfortunately, this validity is limited to small gradient domains, and near 
the boundary this approximation is therefore incorrect. To obtain more 
precise results, we would then need to know exactly the entropy per tile for 
any phason gradient. For example, for the 3--* 2 entropy, this would 
require the tedious numerical calculation of many integrals? ~7~ 

Nevertheless, the entropy per tile for the fixed-boundary entropy 
obtained in this quadratic approximation is 0.253, whereas the expected 
result is 0.261: this approximation is therefore reasonable. 

So the situation is as follows: the random tilings generated by parti- 
tions provide a well-defined statistical physics problem. For a fixed shape 
of the boundary, the entropy tends to a well-defined limit as the tiling size 
increases. But the entropy density is not uniform in the tilings and increases 
from the surface to the bulk. 

In what respect is this model suited to describe real physical struc- 
tures? The partition-generated tilings provide very interesting models 
having inhomogeneous entropy distributions. Such a lack of homogeneity 
is expected in several physical situations when the system is subject to 
specific constraints and specific boundary conditions. In the case of quasi- 
crystals, these materials often grow at interfaces with crystalline parent 
phases, whose influence would then penetrate the bulk of the quasicrystal 
(as long as the entropy stabilization mechanism proves to be dominant in 
this case, a point which is still under debate). 

8. C O N C L U S I O N S  

The present analysis enables us to give a geometrical picture of 
generalized partition problems. It provides additive formulas and, thanks 
to very simple algorithms, it greatly improves the exact enumeration for 
finite-size systems. This paper mainly treats any-dimensional codimension- 
one partition problems, for which an Ansatz for the entropy had been 
previously proposed. Our new additive formulas enable us to test this con- 
jecture further. However, although we can treat larger sizes than was done 
before, we cannot give conclusive results for the entropy at the infinite-size 
limit. Indeed, the dimensionality of the configuration space, and then the 
complexity of the algorithms, considerably increase with the number of 
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tiles. Note that the only standard random tiling type (by standard we mean 
a tiling with rhombi in 2D and rhombohedra in 3D) which has been com- 
pletely solved so far is the simplest one, obtained by mapping from 3D to 
2D, for which an exact configurational entropy multiplicative formula is 
known. In contrast, exact results also exist for other kinds of tilings, such 
as the triangle-square tiling. ~8'~9~ 

Nonetheless, all these results, whether exact or approximate, display 
an important configurational entropy for random tiling models. This 
entropy also has a quadratic behavior near its maximum, which is a 
fundamental hypothesis of the random tiling model. However, one must 
keep in mind that the kind of entropies we compute here are entropies per 
tile, whereas in more realistic models of quasicrystals the tiles are decorated 
and the relevant quantities are then the entropies per atom, which are then 
significantly smaller than the previous ones. 

Our numerical results are specific to the fixed-boundary conditions. 
We have already mentioned that our enumeration method needs a specific 
fixed boundary. The entropy itself depends on this boundary condition 
(which fixes the ratios of the different kinds of tiles or, in other words, the 
phason strain"~), and the free (or periodic) boundary entropy can be higher 
by several percent than ours. For example, the maximum entropy per tile 
for the 3 ~ 2 tilings, which occurs when the three differently oriented 
rhombi are equally numerous, is equal to 0.323 in the fiee-boundary 
case ~61 and to 0.261 in the fixed-boundary one. As shown above, this dif- 
ference can be controlled well by simple arguments. Indeed, although a 
fixed-boundary tiling has a bulk very close to a free-boundary one, the 
effect of the boundary penetrates deeply into the tiling in the form of a 
phason strain gradient between the boundary and the bulk. This gradient 
is explicitly taken into account (with certain approximation), which allows 
a qualitative as well as quantitative description of this phenomenon. This 
enables us to prove that there is only a few percent relative difference 
between both entropies. In addition, the relative difference between these 
two entropies seems to decrease with both dimension and codimension. 

All the topics concerned by the new tools provided by this work have 
not been exhaustively tackled yet. Even the codimension-one problems 
need further treatment. In particular, a first step would be to improve the 
algorithms to treat larger tilings, in order to validate further the entropy 
Ansatz. Besides, we would like to have a geometrical interpretation of 
this Ansatz. Indeed, the structure of the approximate formulas for the 
codimension-one enumerations makes us think that they could be linked to 
(approximate) generalizations of the hook formula, ~34) which is deeply 
linked to the enumeration of walks in the graphs associated with lower 
dimensional problems (see Appendix B). 
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Higher codimension problems can also be analyzed through this 
geometrical viewpoint, but the configuration space adopts a more complex 
structure. The iterative partition process induces a nice fibered structure, 
but convexity as a whole is lost. It is nevertheless possible to develop 
further tools, and we have already obtained interesting results about the 
simplex decomposition in these cases, such as a generalized descent 
theorem and exact enumerations of simplices, which will be published 
separately. 

We have not discussed here some consequences of the knowledge of 
the configuration space provided by this analysis, in terms of structure, 
ergodicity, or connectivity. For instance, it gives interesting results con- 
cerning the enumeration of transformation paths between different tilings. 
Here also this analysis will be much richer for higher codimension 
problems, where the nonconvexity of the configuration space is not only a 
cause of complexity, but also a source of mathematical richness. 

Of course, a complete calculation of the free energy necessarily goes 
together with the introduction of energy in the tilings, assigning different 
energy costs to different local configurations of tiles. One needs to add an 
additional dimension to the configuration space (for the energy) and thus 
to have access to the energy landscape. This is not an easy task, but we 
have already given some arguments suggesting a hierarchically structured 
energy landscape) 2~ Note that if this appears to be true for the real 
quasicrystalline structure, one would then expect some glasslike properties 
in quasicrystals. 

APPENDIXA.  PROOFS 

A.1. Integral Volume of a Normal Simplex 

Up to basis vector permutations, there is no loss of generality in 
supposing that the q-dimensional normal simplex c j M  of side s is a face 
of the "standard" simplex Simp(Ao= O, A~ ..... AK=S0), where Ak is the 
point of coordinates 

(s ..... s,O ..... O) 

k t imes  

That is, ~E,d = Simp(Ak0 ..... Ak,). Let u i = Ak,Ak,_,, V~ be the affine space 
defined by the At.,, and V 2 be the affine space defined by the Ai, i = 0 ..... q. 
Then 

f :  { 0  ~ Ak,, 
e i ~ II  i 
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is a unimodular affine map from V_, to V). Indeed, if M is an integral point 
in V.,, then f ( M )  is integral; if N is an integral point (of Z K) in Vt, then 
the resolution of the linear system f ( M )  = N shows that the unique solu- 
tion M is an integral point. Therefore f defines a linear bijection between 
the integral points in V_, and the integral points (of Z K) in Vt. 

In particular, if M) ..... M,, are integral points, then 

Card(Simp(M t . M_. ..... M,,) c~ Z h') 

= Card(Simp(f(M, ), f ( M 2 )  ..... f ( M . ) )  c", Z K) 

Now, by f ,  Ak, ~ Ai. Hence, this problem is equivalent to the enumeration 
of the configurations in a linear partition problem (Section 3.5): 

P./,t,t~(s) = Card(Simp(A 0 ..... Aq) n Z x) (A.1) 

--(s;q) 

A.2. Proof of the Second Recursive Formula (Section 5.3.1) 

We need to introduce a notation a bit more complex than in 
Section 5.3.1. Let us write the polynomial P.~,,~ in terms of elementary 
polynomials X k q' not necessarily equal to q [i.e., in the basis A- (X,/)k~z, q, 

and not (X~)k~ z, as in Section 5.3.1]: P,T t , , l (p )=Zf lkX2 , (p ) .  Then ~'~('/) �9 J . ~ l , t ]  

is the polynomial (in X) defined by ~'~') (X)=  Z/Yk Xk. 
The first recursive formula then reads 

(q) X ~ (q) .r , / ) ( p ) = ~ ,  (X, , ) (p--1)+ 
.st,t] ~ T,~-[,I] 

r < q  

Pr -- 1 ) 

But since for any P, 

r t l  _ _  we get X , ~ ( p ) - X , , ( p  1) =XI;_,(  p -  l) and . ~ ' ! ~ I . , ~ ( X , , ) ( p ) - ~ . ~ . , ) (  "~ Xq)  
( p -  1 ) = ~ t , , ~ ( X , , _ l ) ( p -  1). So 

. ~ , , j (  X,~ _ ~ ) (p  - 1 ) = Y, P~ ,Kp - 1) 
�9 "~[ '1  e T M u  ] 

r < q  
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and thanks to Eq. (5.4) of Section 5.3.1, X~ = (X,~_ , - l ) U - ' - " X ~ _  ,, then 

P ~ H (  p - 1) = ~r~] (  X, .)(p - 1 )  = [ ( X,~_ l - 1) '~-t -"  ~zc~]( X u_ l ) ]( p - 1) 

and then 

"~r 
. ~ [ r ]  E T~,-[q 1 

r < q  

[(x,,_, - 1 ) ' , -  ' - " ~ ( x , , _ ,  ) ] ( p  - 1 ) 

We then just have to make the substitution X u_ ~ ( p -  1 ) ~ X. | 

A.3. Decomposit ions: Proofs of Sect ions 5.4 and 5.5 

Here we prove the existence of decompositions into both q-dimen- 
sional and K-dimensional simplices. However, since the main result, in 
algorithmical terms, is the Descent Theorem, we first prove this theorem 
and the decomposition into K-dimensional simplices. The second proof 
being quite similar to the first, it will be exposed more rapidly. 

A.3.1. Proof of the Descent Theorem (Sect ions 5.5.1 and 
5.5.2). Here we prove the existence of the decomposition o f -~ [~]  into 
K-dimensional simplices and more precisely the Descent Theorem. The 
simplices naturally appear in this proof as total orders compatible with the 
partition problem partial order. 

Consider a partition problem defined by the inequalities (3.1) and 
(3.2) of Section 3.2: xi ~< XJ and 0 ~< x; ~< p. 

We suppose the existence of a zero-descent simplex in the decomposi- 
tion [this means that we suppose that all the partitions which satisfy 
p>~xl  >~x2>~ -. .  >~Xx>~O lie in the simplex or, in other words, that the 
total order x I >/x2 >/ ... >~ XK is compatible with the inequalities (3.1)]. 

In the K-dimensional configuration space, for each couple of indices 
{i, j}, i < j ,  we define two half-spaces: 

�9 H + is the set of points such that x~>~Xj. i , j  

�9 H~j is the set of points such that x~ < .x~i. 

Now, ~iven a pair of indices { i , j } ,  i <  L the inequalities (3.1) of the 
partition problem may imply that an inequality holds between xi and -Yi for 
any allowed partition. In this case, we say that i and j are dependent.  
Otherwise we say that they are #Tdependent. In the example of Section 3.1, 
2 and 9 are independent, whereas 2 and 7 are not. 

Note that, since we know the existence of a zero-descent simplex, 
when i and j are dependent ( i < j ) ,  the inequality in necessarily x~>~.x) 
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(and not .yi>~xs). In effect, the zero-descent simplex is defined by p~> 
x~ ~>x2>~ ... >~x~,.>~0 and if i< j ,  it is contained in the half-space x;~>xj 
(and not .y~ >/xi). The same inequality holds for the whole convex polytope. 
As a conclusion, when i and j are dependent (i < j ) ,  the convex polytope 
..yrtK1 is in H + L / "  

We shall now only consider the inequalities (3.1) of the partition 
problem. Afterward we shall make the intersection with inequalities (3.2). 
The set of points that satisfy inequalities (3.1) is denoted by Q (so .U[x~ = 
{ (xA-)/(xk) ~ Q and Vi, O ~ xi <~ p} ). 

Now (dep. = dependent), 

Q= ~ H + i , j  
i < [ dcp. 

We can always define a disjoint partition of R K in terms of the H +" - L j  

sets (ind. = independent): 

H'~o.~ R~-= N I U N 
/ < / i n t l .  (;:qlt<lind.~ { +,  --} i < l  ind. i , j J  

This way of writing R K might seem trivial, but its interest and meaning 
will appear  in the following: 

Q=O R N U N 
i < j d e p .  " ' "  \ l t : i j i ,<l i , ,d .E { + ,  --] i< . / ind ,  i , . / j / ]  

So Q is the disjoint union of the different sectors of space defined by 
a given set of signs (e0)i<jindependent: 

e = U H'),.'~ m ~ H + (A.3) 
IJ:q)i<lmd~ { + ,  --} i<:: l ind  t,.IJ i< . idep ,  i,.j 

Hence, such a sector is defined by a set of strong (er = - ) or weak (e 0 = + 
or i < j  dependent) inequalities. 

Now let us consider the order relation among the variables x~ 
associated with such a set of inequalities: it is a total order, since, given two 
variables, we can always compare  them. Suppose now there is a cycle of 
length n in this order relation 

X i l  "--~ X i2  "--> . . . ---~ X in  "~" X i t  

where ~ means >~ or >.  But in this sequence of indices, there is neces- 
sarily at leasy one descent ( ik>ik+~) and hence a strict inequality 
(xl k > xi~.+,), which denies the existence of such a cycle. 
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Therefore we have a total order relation with no cycle. It is then of the 
form 

Xit ~ Xi2 ~ . . . . . . .+Xih  

If we add now the set of inequalities (3.2), we realize that the conbex 
polytope of the partition problem is a disjoint union of simplices of the 
form 

p >~ x fi -"~ X i,_ "-~ " '"  --~ X i >~ 0 

which is what we aimed to prove: indeed, by the definitions of H+ and 
H - ,  the symbol --, is a strict inequality only when the two successive 
indices define a descent. The number of strict inequalities, that is, the 
number of faces we are to suppress, is therefore equal to the number of 
descents. We insist here on the fact that if l)> tlj+~ and ,,%=x~,+~, then the 
representative point is counted in a simplex where llj and t)+ t are permuted. 

Now, given such a simplex, let us use the notation X,,,=x~,,. Let 
k~ ..... k,. be the indices k which precede the descents (we suppose that there 
are exactly v descent). Then this simplex is defined by 

p>~ Xl  >~ . . .  ~>X~.,>Xkt+t~>... >~ Xk, .> X~., +l >~ . . .  >>. Xt.>~O 

The closure of such a simplex is obtained by replacing every strong 
inequality by a weak one. It is the K-dimensional normal simplex 

Simp(O.r A l l ,  A i , , . . . ,  A i t . _ l ,  S 0) 

where the A i are vertices of the graph T of this partition problem and 
O.r <Ai_,< .. .  <Aix_ t <So in this poset T. Conversely, any such 
normal simplex is the closure of a (semiopen) simplex of the decomposi- 
tion. Hence, the convex polytope .~[K] is a (nondisjoint) union of such 
simplices, as expressed by (5.8) of Section 5.5.1. 

Now we count the number of integral points in such a simplex: the 
smallest (in terms of weight) partition (X7 'i') is 

v ~ . . . ~ v > v - - l ~ . . . ~ l > O ~ . . . ~ O  

whereas the biggest (X, ' '~)  is 

p>~ . . .  >~p > p - -  l >~ . . .  >~p-- v +  l > p - - v  >~ . . .  > ~ p - - v  
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so that if Y~ = X~-X~" ' ,  the convex body is defined by 

p - v >~ Y i >t Y 2 >~ "'" >1 Y s >~ 0 

Hence there are as many integral points in this simplex as in a normal 
simplex of side p - v, that is, p + s -  ,. ( ,,," )- I 

Note that in this proof, the assumption on the zero-descent simplex is 
a very weak condition: up to an adequate index permutation, any of the 
simplices in the decomposition might be chosen as the zero-descent one 
(that is, the r e f e r e n c e  simplex) and the proof would be exactly the same. 
The only difference would be that, in order to get the disjoint union of 
simplices, we would not necessarily suppress the same faces. 

A.3.2. Proof of Section5.4: Decomposition in q-Dimen- 
sional Simplices. In fact, we shall simply modify the previous proof. 
Let us consider three types of H sets instead of two: 

�9 H + is the set of points such that x i > x  r i.j 

�9 HI[ j is the set of points such that xi = X r  

�9 Hi_  i is the set of points such that x; <.Vr 

Now, when i and j are dependent (i <j) ,  the relation between .x) and 
Xi can be x~>xj  or .x'~=.x[i (but not x j<x / ) .  As above, we shall now only 
consider the inequalities (3.1) of the partition problem and afterward make 
the intersection with inequalities (3.2). The set of points that satisfies 
inequalities (3.1) is still the (hyper)cone Q. If we write 

H" Q= N H+i.jU ,.ij 
i <./dep. 

and 

then we get 

Rh'= 
Ic0)l</ind, e { 4-.0. -- } ~ i . < j i n d .  t.I/] 

disj. } ':, 

/ disj. ( 

,I,:OI/<ji,, o e { + . 0 . - - I  i < / i n a  , . .Ijj 
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So Q is the disjoint union of the different sectors of space defined by 
the given families of"signs" (eg/)~<j0~,,. ~ { + ,  0} and (egj);<i,,d ~ { + ,  0, -- }" 

disi. /i~< J Q = 0 HI:,':~/ 
(~ :~1~  { + , 0 .  - -  } 

(A4) 

Such a sector is an open cone in the linear subspace defined by the 
equalities (e0.= 0) between variables .x', 

As above, if ~ means now > or = ,  this sector is either empty or 
defined by a sequence of the form 

X i l  ~ X i ~  ~ . . . ~ X i g  

Remark. This decomposition can be considered as a tr&ngulation of 
the cone Q, as defined, for example, in ref. 33. In effect, it is written as the 
disjoint union of "simplicial cones," that is, cones built on simplices, which 
satisfy all the axioms of a triangulation. 

If we add now the set of inequalities (3.2), the convex polytope of the 
partition problem is a disjoint union of simplices of the form 

p >~ X i l ""~ X i 2 ---+ . . .  ----~ X i g ~ O 

The closure of this simplex is a q-dimensional normal simplex: 

Simp( O ~t,j, A i,, A i_, ..... A i,,_ ,, So) 

where q -  1 is the number of strict inequalities in the above sequence, and 
where the A~, are vertices of the graph T of this partition problem and 
O r  <Ai  <So in this poset T. Conversely, any such 

�9 q -  I 

normal simplex-is the closure of a (semiopen) simplex of the decomposi- 
tion. We write this semiopen simplex Simp*(O,~t~.l, A;,, Ag_, ..... A~,_,, So): 

d i s j .  

l di~i. .~[F] = U 
q = [ O i [ K ]  <: "I l l  "< "112 < " '"  < "llq I < "S'cl 

, * l i e  | "# [h ' ]  

\ 
Simp*(O.~t~.l, A i,, A i . . . . . .  A i,~_ t, S o ) )  

(A5) 

Now, as in the previous proof, we count the number of integral points 
in such a simplex. As above, we prove that there are as many integral 
points in this simplex as in a q-dimensional normal simplex of side 
p - q + l ,  that is, (P~) .  
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Hence, 

q = I O i i K  } < . , Iq  

u 
< " I t2  < " " ' < " l l q  - l < '~'11 q 
, , l i e  I ' ; [ K  l 

Remark. This last decomposition of #[~] is not a triangulation any 
longer since there exist faces not all of whose subfaces are in the decom- 
position (the subfaces corresponding to the inequalities xt, = p or xi,.= 0). 
However, if we added all the subfaces of all the faces to this decomposition, 
we would get a triangulation. 

A.4. A Geometrical Proof of the Symmetry Property 
(Section 5.5.4) 

Our aim here is to prove that the coefficients aJ have the symmetry 
property a j =  a,~ t _ j, and to make precise the value of M. 

N o t a t i o n .  For the sake of brevity, we shall use the notation 
Ti ( p ) = (I, + ~-~" - ,i~ instead of X['~.~i( p ). 

Then P ~t~] = Z a i T i .  
We shall now use Ehrhart 's  reciprocity law: i f / ~ i ~ I ( P )  denotes the 

number of integral points in the interior of p . ~ [ K ] ,  then 

JB ~t  A l ( p )  = ( - -  1 ) K P I ~ [ k - ] ( - - p )  = 2 ai ( -- 1)h" T j ( - - p )  

The interior is defined by the new inequalities 

x~ > X/ and p > xi > 0 

We shall use again the notations xi,.....i,, 1 <~ i ,  <~k,,, to emphasize the 
fact that the partition variables are arranged in a d-dimensional hypersolid 
array. Then let us define the new set of variables Xi~.....~ as follows: if 6 is 
the Manhat tan distance, in this hypersolid array, between the box i~ ..... i,/ 
and the box k~ ..... ka ,  then 

X i ,  .....i I = x i  I . . . . . i ~ -  5 - -  1 

These new variables will be best understood on the 2-dimensional 
example of Fig. 15. 

Now the X; have the nice property that they satisfy the inequalities 

Xi/> Xj and P - Po >~ X i  >t 0 
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Xl, 1 --  k 1 - -  k 2 "~- 1 Xl, 2 - -  k 1 - k 2 q -  2 

x2 , l - -k l - -k2+2 z 2 , e - k l - k 2 + 3  
: 

xk,-~,l - k2 - 1 Xk~-,,2 - k2 
xk~,l - -  k2 XkL,~ - -  k'2 + 1 

�9 . .  X l , k 2 - 1  - -  k l  - -  1 X l , k 2  - -  k l  

�9 . .  X 2 , k 2 - [  - -  k l  X2 ,k2  - -  k ]  q -  1 

�9 . ~  

. ~  

X k l - l , k 2 - 1  - -  3 .T, k l - l , k 2  - -  2 

Z k l , k 2 _  1 - -  2 Z k l , k 2  - -  1 

Fig. 15. New set of wlr iables  Xi (3 --* 2 problem).  

where 

po=kl +k2+ "" + k a - d + 2  

These inequalities are the same as (3.1) and (3.2) except that p is 
different. Then the number of integral points in the interior of p ~  I:hl is 
P ctAJ(p - -  Po) = Y~ aiT~(P -Po). 

Then 

ai( -- l)t" T j ( - p )  =~'. aiT~( p --p,,) 

Now the binomial definition of T/ enables us to write ~ � 9  
(--1)KTM_i(--p), where M = k l . k 2 . . . k a - ( k l + . . .  + k a ) + d - l .  
Replacing this equality in the right-hand side of the above equality, we get 

a t T/= ~ a/TM _/, or better 

~.aiTj=~',aM_/T~ 

By unicity of the coefficients a/, we finally have 

a ,  = c,:,, , I 

APPENDIXB.  ASYMPTOTIC BEHAVIOR AND 
k-DIMENSIONAL CATALAN NUMBERS 

We see in this Appendix that the number of normal simplices of a 
partition problem normal decomposition is given by the asymptotic 
behavior of .P~ ~ (p). Indeed, tbr any j, (t,-~+~,)~ph/K ! when p goes to 
infinity. Hence 

pX 
P~fA ( p ) ~ (  ~ ai)-~. (B.I) 

�9 \ j ~ > 0  

and 5Z/~>o a/ is  the number of simplices. Then the number of simplices is 
given by the leading term of Ehrhart's polynomial times K!. 
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For instance, let us consider the 3 ~ 2 problem k x L Now, p ~ 
gives the number of simplices: 

l! 2 ! . . . ( k -  1)! 
a/=(kl)! l! (l+ 1)! . . . ( / + k -  1)! (B.2) 

.j/> o 

But we know that this number is also te number of walks in the graph 
of this partition problem. Now this graph is composed of the integral 
points of a 2 ~ 1 partition problem convex polytope, that is, a k-dimen- 
sional normal simplex of side 1 (or an/-dimensional simplex of side k). This 
is a generalization of the well-known Dyck walks of combinatorics, that is, 
discrete walks in a triangle of side 1. 

Hence, this work gives as a corollary the number of generalized 
k-dimensional Dyck walks, called the generalized k-dimensional Catalan 
number--since classical Dyck walks are counted by the Catalan numbers 
(21)!/[1!(1+1)!]. This combinatorial problem is also known as the 
generalized ballot problem. 

Note that this formula for the number of Dyck walks had already been 
derived by Young in 1927. ~27~ A nice proof can also be derived from the 
hook formula by Frame, Robinson, and Thrall (for a nice presentation of this 
result, see ref. 34). We have a direct combinatorial proof of this result, too. 

APPENDIX  C. ANALYTICAL BEHAVIOR OF THE aj FOR THE 
3-~ 2 PROBLEM 

We are going to give an approximate expression for ai for "small" j, 
in a sense that will be defined below. 

We shall use the notation ai(k, I) for the coefficients of the 3---, 2 
problem k x l. 

First, let us prove that, for j "small," 

.i 
3 4 2  log Wk.i, i "~log ~ ai(k,l) (C.1) 

i = o  

For a given j, 

~..I.]- ai(k, l) 
i=o kl 

i = O  

and, obviously, / 3-2 Z i=oai(k, l)<~ W~. i.i . 
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Hence, 

l o g L  a j ( k , l ) ~ l o g W  3-2-< ~, ( lkl ) ,./.i "~l~ ai(k, 1) +log k j 
i = 0  i = 0  

Thanks to the Stirling formula (or Section 6.1.2), 

/ k t  + j'~ 
log~ kl j = l o g ( k l + j ) ! - l o g ( k l ) ! - I o g j !  

"-" ( kl + j) log(k/+j)  - kl log(k/) - j  log j 

"-. ( kl + j) log(kl) - kl Iog(kl) - j  log j 

-~ j log(kl/j) 

~< j log(k/) 

Now, the approximative result for S 3-'2 (Section7.1) gives, using 
again the results of Section 6.1.2, applied to the factorial functions of 
order 2, 

3 4 2  log W~.l.i ~ Cst-(kl) 

Hence, the result given at the beginning of this Appendix is valid as 
long as j log kl ~ kL that is j ~ kl/log kl. This is what we call '7 small." This 
covers, in particular, the "diagonal" case j = k = l. 

Now, we shall see that, in the same domain of j's. 

.i 

log ~ ai(k, 1) "~ log ai(k, I) (C.2) 
i = 0  

Indeed, let us assume that when j is "small," ai(k, 1) is an increasing 
function of j (see discussion below). Then 

.i 

aj(k, l) <~ ~ a~(k, l) <<. ( j+  I) aj(k, l) 
i = o  

Hence, 

log a/(k, l) <~ log ~ ai(k, l) <~ log(j + 1 ) + log ai(k, l) 
i = 0  

822 87,.3-4-19 
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But in this domain of j 's,  log)Z~=oa~(k, 1 ) - C s t  .(kl) and l o g ( j +  1) is 
infinitely small with respect to log ~{=o at( k, l). 

As a conclusion, 

3 ~ 2  log Wk.l.i ~-- log at(k, 1) (c.3) 

This means that, in this range of j 's ,  the enumeriation is asymptotically 
dominated by at, the number of simplices with exactly j descents in the 
configuration space. [Looking more closely at the proof, we would see 
that, for j ~  [ 1 --.Jo], the convergence is uniform for (k, 1) ~ m.]  

Note the existence of a similar relation for any partition problem, or 
any standard tiling enumeration problem, as soon as the increasing charac- 
ter of the a / i s  established. However, except for the 3 ~ 2 problems, where 
it can be proved directly from the MacMahon enumeration functions, and 
for the 4---, 3 problems, where it can be conjectured thanks to the 
approximate enumeration functions, this increasing character can so far 
generally be verified only on examples. 

Thanks to this last relation and to the asymptotic behavior of the 
generalized factorial of order 2, we shall be able to give the analytical 
behavior of the ai: 

log a~,,(k, ak) ~ log W~.~.2,,, 

k2 
- 2 [(1 +o~+,u) 2 log(1 +o~+,u) +/.tz log,u 

+ ~2 log cc -- (~ +/ t )  2 log(~ +/~) 

- ( 1 + ~)2 log(  1 + ~)  - -  ( 1 + /~ )2  log( 1 + / ~ ) ]  

k 2 

=TL(/~) 

For instance, the function f , (p)  is given in Fig. 16. 
[The convergence (2/k 2) log a~,~.(k, o&) ~f~,(p)  is also uniform for 

(~, p ) e  C, C compact subset of (R*)2.] 
Moreover, 

L(/~) =L(oO = o~-'f,,/~( I/oO (C.4) 

3 4 2  These relations are compatible with the symmetries of W~./.j. 
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o o oi~ o;, o'.o o'., ; ,'.~ ,'., ,'., A 

Fig. 16. The function J'Jp). 

Remark. The entropy per tile (Section 7) can be expressed in a very 
simple way thanks to these functions: 

1 
S 3 - "- - f , , ( / l )  (C.5) 

2(1 + e +,u) 
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